APPENDIX M
NOISE
BASELINE SOUND STUDY OF THE WHARF BOSTON EXPANSION PROJECT

REVISION 1 TOPICAL REPORT RSI-3144

PREPARED FOR
Coeur Wharf
10928 Wharf Road
Lead, South Dakota 57754

MAY 2022
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

2.0 PREVIOUS INVESTIGATIONS .. 3

3.0 METHODOLOGY ... 4

3.1 WHARF MONITORING .. 4

3.2 RESPEC MONITORING .. 5

4.0 RESULTS AND DISCUSSION .. 8

4.1 RESPEC RESULTS ... 8

4.2 WHARF RESULTS ... 10

4.3 HISTORICAL DATA COMPARISON .. 11

5.0 SUMMARY .. 15

6.0 REFERENCES .. 16

7.0 GLOSSARY ... 17

APPENDIX A. SITE PHOTOGRAPHS ... A-1

APPENDIX B. RESPEC MONITORING DATA PLOTS .. B-1

APPENDIX C. WHARF MONITORING DATA PLOTS .. C-1
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>6</td>
</tr>
<tr>
<td>3-2</td>
<td>7</td>
</tr>
<tr>
<td>4-1</td>
<td>9</td>
</tr>
<tr>
<td>4-2</td>
<td>10</td>
</tr>
<tr>
<td>4-3</td>
<td>11</td>
</tr>
<tr>
<td>4-4</td>
<td>12</td>
</tr>
<tr>
<td>4-5</td>
<td>13</td>
</tr>
<tr>
<td>4-6</td>
<td>14</td>
</tr>
</tbody>
</table>

3-1 Sound-Monitoring Locations
3-2 Sound Sources and Average Decibels
4-1 Sound-Monitoring Data
4-2 Summary of Wharf Sound Data From April 20 to July 27, 2021
4-3 Summary of Wharf Sound Data From April 22 to May 6, 2022
4-4 Site SND-05 and Wharf Meter 1248 Sound-Data Comparison
4-5 Site SND-06 and Wharf Meter 1249 Sound-Data Comparison
4-6 Sound-Monitoring Data From Kliche [2010]
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Boston Expansion Baseline Study Area Map</td>
<td>1</td>
</tr>
<tr>
<td>3-1 Wharf Sound Monitoring Location Map</td>
<td>4</td>
</tr>
<tr>
<td>3-2 RESPEC Sound-Monitoring Location Map</td>
<td>5</td>
</tr>
<tr>
<td>3-3 Instantel Micromate Sound-Level Meter</td>
<td>7</td>
</tr>
<tr>
<td>A-1 Site SND-01</td>
<td>A-2</td>
</tr>
<tr>
<td>A-2 Site SND-02</td>
<td>A-3</td>
</tr>
<tr>
<td>A-3 Site SND-03</td>
<td>A-4</td>
</tr>
<tr>
<td>A-4 Site SND-04</td>
<td>A-5</td>
</tr>
<tr>
<td>A-5 Site SND-05</td>
<td>A-6</td>
</tr>
<tr>
<td>A-6 Site SND-06</td>
<td>A-7</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

Coeur Wharf (Wharf) has proposed to expand its existing gold mine operations in the area known as the Boston Expansion, located on the southern edge of the Wharf Mine along the Portland Ridgeline. This area is approximately 4 miles west of Lead, South Dakota, in Lawrence County. The proposed permit area consists of approximately 47.4 acres of private land located in Sections 2 and 3, Township 4 North, Range 2 East. Figure 1-1 shows the expansion study area. The blue outline represents the current permitted mine boundaries for Wharf and Golden Reward, and the pink outline represents the proposed Boston Expansion permit area.

Figure 1-1. Boston Expansion Baseline Study Area Map.

A baseline environmental study in the Boston Expansion area was completed per the requirements of the South Dakota Department of Agriculture and Natural Resources (SD DANR). The SD DANR mining rules, Administrative Rules of South Dakota (ARSD) 74:29, and South Dakota Codified Law (SDCL) 45-6B require a baseline sampling plan to characterize baseline sound adequately. SDCL 45-6B-92 states that the reclamation plan shall describe and address critical resources that are potentially affected by the mining operation, including noise at “areas near potential receptors including residences and recreational areas.”
In fulfillment of SDCL 45-6B-92 and the baseline sampling plan for the Boston Expansion area, a sound study was conducted. To evaluate current sound conditions as work progresses along the Portland Ridgeline and the Flossie Pit, Wharf installed two Sonitus EM2030-A fully automated, remote sound meters in April 2021. Monitoring is still active as of this report. RESPEC also conducted a supplemental sound study with handheld instruments at nearby noise receptors on 4 separate days (July 13, July 20, and July 28, 2021, and May 3, 2022). The purpose of this report is to summarize the existing or baseline sound near the proposed mining expansion based on data collected by RESPEC and Wharf and compare those data to historical data collected during previous sound investigations.

This report is organized to optimize available information and understanding of the sound surrounding the site. Chapter 2.0 summarizes previous sound studies at the Wharf Mine, and the methodology used to conduct the study is presented in Chapter 3.0. A discussion of the results is presented in Chapter 4.0, and Chapter 5.0 provides a summary of this study. References are cited in Chapter 6.0. The report concludes with site photographs in Appendix A, tables and plots of RESPEC data in Appendix B, and plots of the Wharf sound data over the review period are in Appendix C.
2.0 PREVIOUS INVESTIGATIONS

Several pertinent baseline sound-level studies have been performed near the Wharf Mine. The last study was performed in 2010 by Dr. Charles Kliche, and the other two studies were both performed by MartyAnn Apa in 1987 and 1992. A study was also conducted by John Erickson in 1988–1989. A summary of the studies is as follows:

/ 1987 – A sound study was conducted for the Golden Reward Mine in 1987 [Apa, 1987]. Sound measurements were obtained at 12 locations in and around Golden Reward’s proposed open pit. The report concluded “average background noise levels from all sites fall within or near environmental levels for rural areas.” Noise levels were highest at sites along roadways where vehicle traffic contributed to the overall sound levels.

/ 1988/1989 – The study conducted by Erickson [1988] aimed to quantify sound from mine operations regarding receptors outside of the mine boundary. A subsequent report by Apa [1989] analyzed Erickson’s 1988 data. These reports concluded that mine-related sound (excluding blasting) was 35-50 decibels (dB) and would be expected to have minimal effect on nearby dwellings.

/ 1992 – The 1992 sound study conducted by Apa was for the Clinton Expansion. For this study, sound measurements were taken at ten locations around the proposed Clinton Expansion. The report concluded that sound levels at eight of the ten sites were typical for rural areas. At the other two sites, sound readings 10-15 dB higher than background noise were caused by high winds and local and highway traffic noise [Apa, 1993].

/ 2010 – A baseline sound study was conducted in 2010 for the Green Mountain/Golden Reward Expansion. Measurements were taken at 11 locations on four dates in July and August 2010 (some of these locations coincided with monitoring locations in Apa [1993]). The results from this study indicated that most sound levels were typical for rural area forests. Most higher levels of sound were from wind, wildlife (i.e., birds), or traffic. The only verifiable mine activity sounds were related to a backup alarm, water truck, lowboy trailer, and general shift changes in mine traffic [Kliche, 2010].
3.0 METHODOLOGY

This study includes sound measurements collected by Wharf and RESPEC. RESPEC conducted a complementary sound-monitoring program to confirm that sound data collected by Wharf were accurate and to expand the monitored area.

3.1 WHARF MONITORING

To evaluate current sound conditions as work progresses along the Portland Ridgeline and the Flossie Pit, Wharf installed two Sonitus EM2030-A fully automated, remote sound meters in April 2021, as shown in Figure 3-1. These meters are located at the Terry Peak Ski area overflow parking lot (meter 1249, Site SND-06) and south of the closest residence (meter 1248, Site SND-05). The installation locations were selected with respect to proximity to the housing development and Wharf-owned properties. These sound meters were factory calibrated and then installed by Wharf staff.

Beginning on April 20, 2021, data have been collected at 5-minute-average intervals. Data recorded include LAeq, LAmax, LA10, LA90, LCeq, LCmax, LC10, and LC90.1 These functions are measured simultaneously with the A-weighted and C-weighted frequencies. When readings over 60 dB are

1 Chapter 7.0 contains a glossary of terms.
measured, sound clips are automatically recorded to capture the source of the sound. For this report, 3 months of data from 2021 (i.e., April 20, 2021, through July 27, 2021) and 2 weeks of data from 2022 (April 24, 2022, through May 8, 2022) were reviewed and analyzed. Wharf intends to conduct continuous sound monitoring for the foreseeable future.

3.2 RESPEC MONITORING

RESPEC performed an independent sound-monitoring study in July 2021 and May 2022. RESPEC sound-monitoring locations are shown in Figure 3-2 and described in Table 3-1. Site photographs are included in Appendix A. The locations of RESPEC sound-monitoring sites were established to provide paired locations with the two Wharf sound-monitoring stations (meters 1248 and 1249) and several of the same locations measured by Kliche [2010]. Corresponding historical monitoring sites are noted in Table 3-1. However, the 2021 monitoring locations may not be exactly coincident with the corresponding historical monitoring site. For example, monitoring location SND-05 was at the site of Wharf meter 1248 and is within a few hundred feet but not in the exact location as Kliche’s Point 9. Location SND-07 was added in May 2022 based on SD DANR comments on April 13, 2022; this location provides additional spatial coverage within the Lost Camp subdivision, and the added May 2022 data provides additional temporal data.

![Figure 3-2. RESPEC Sound-Monitoring Location Map.](image-url)
Table 3-1. Sound-Monitoring Locations

<table>
<thead>
<tr>
<th>Point</th>
<th>Location Description</th>
<th>Corresponding Historical Monitoring Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND-01</td>
<td>Intersection of Last Chance Trail and Whitetail Trail</td>
<td>Kliche [2010] – Point 1</td>
</tr>
<tr>
<td>SND-02</td>
<td>Last Chance Trail (south end)</td>
<td>Kliche [2010] – Point 2</td>
</tr>
<tr>
<td>SND-03</td>
<td>Parking Lot of Barefoot Condos</td>
<td>Kliche [2010] – Point 10</td>
</tr>
<tr>
<td>SND-04</td>
<td>Terry Valley Road District Storage Shop</td>
<td>Near Kliche [2010] – Point 4</td>
</tr>
<tr>
<td>SND-05</td>
<td>End of Moose Trail at Residence</td>
<td>Wharf Meter 1248 Near Kliche [2010] – Point 9</td>
</tr>
<tr>
<td>SND-06</td>
<td>East End of Terry Peak Overflow Parking Lot</td>
<td>Wharf Meter 1249</td>
</tr>
<tr>
<td>SND-07</td>
<td>Last Chance Trail (southwest of intersection with Antelope Trail)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

All sound-level measurements were made using the handheld portable instrument Instantel Micromate, as shown in Figure 3-3. The Micromate can simultaneously measure the following sound levels: LA\(_{\text{max}}\), LA\(_{\text{min}}\), LA\(_{50}\), LA\(_{90}\), and LA\(_{eq}\). These functions are measured simultaneously with the A-weighted frequency. The Micromate is equipped with communications software that allows configuring the instrument to download plots of measurements for reporting purposes.

RESPEC conducted monitoring at each point for an approximate 10-minute period on five events over 4 separate days (July 13, 20, and 28, 2021, and May 3, 2022). On July 13, 2021, locations were field verified, and monitoring was conducted during midday, which included a monitoring event that coincided with a blast event at 12 p.m. Each location was monitored twice on July 13, 2021. Monitoring was conducted in the afternoon of July 20, 2021, and the third monitoring event was conducted midmorning on July 28, 2021. Monitoring was conducted midday on May 3, 2022. Decibel levels for common environments and sounds are provided in Table 3-2. Results are provided and discussed in Chapter 4.0.
Figure 3-3. Instantel Micromate Sound-Level Meter.

Table 3-2. Sound Sources and Average Decibels
 [Apa, 1989]

<table>
<thead>
<tr>
<th>Source</th>
<th>dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic Drill</td>
<td>100</td>
</tr>
<tr>
<td>Noisy Factory on Urban Street</td>
<td>80–90</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>70–80</td>
</tr>
<tr>
<td>Business Office</td>
<td>60–70</td>
</tr>
<tr>
<td>Conversation Speech</td>
<td>50–65</td>
</tr>
<tr>
<td>Living Room</td>
<td>40</td>
</tr>
<tr>
<td>Rural Area Forest</td>
<td>25–30</td>
</tr>
</tbody>
</table>
4.0 RESULTS AND DISCUSSION

4.1 RESPEC RESULTS

The results of RESPEC’s sound monitoring in July 2021 and May 2022 are presented in Table 4-1, and plots of the monitoring data are included in Appendix B. A summary of sound at each monitoring location is provided in the following text:

/SND-01: Site SND-01 is located at the intersection of Last Chance and Whitetail Trail. This site is generally a busier intersection within the subdivision; traffic was observed during all of the monitoring events. On July 28, 2021, the equivalent continuous sound L_{Aeq} was the highest value of any monitoring (61.5 dBA) and the highest maximum reading (86.9 dBA); during this monitoring period, several all-terrain vehicles (ATVs) and other vehicles drove immediately adjacent to the meter. Wharf heavy equipment was barely audible (40–45 dBA) on July 28, 2021, when no traffic was present. The maximum sound ranged from 61.0 to 86.9 dBA. In addition to traffic and ATVs, other observed sounds at this site included wind, thunder, birds, distant construction noise from within the subdivision, and an airplane.

/SND-02: This site, located on southern Last Chance Trail, is the quietest site with some of the lowest average readings. Sounds included vehicle traffic, wind, wildlife, and distant construction/chainsaw noises within the subdivision. The maximum sound ranged from 56.5 to 69.3 dBA. No noises attributable to the mine were observed.

/SND-03: The parking lot at the Barefoot Resort condos was a relatively noisy site. During two monitoring events in July 2021, landscaping activities (lawnmowing and weed eating) were occurring in the area. On July 13, 2021, a family created noise in the parking lot by unlocking, opening, and closing doors and driving their vehicle that was parked in the lot. Additional sounds included wind, voices, traffic, and insects. No noises attributable to the mine were observed. The maximum sound ranged from 59.6 to 74.0 dBA.

/SND-04: Located just outside the entrance to Wharf and near Highway 473 and adjacent to the Terry Valley Road District storage shop, this site had consistent light traffic, which included notable ATV traffic, during monitoring. Other noises included wind, wildlife, plane, helicopter, semi brakes, and a truck backup alarm. The maximum sound ranged from 68.7 to 77.8 dBA.

/SND-05: This site is a paired location with Wharf meter 1248 located southeast of the closest residence to the Boston Expansion. The first monitoring event on July 13, 2021 was during a scheduled blast, and noises included the blast and pre- and postblast emergency sirens; the maximum sound was 61.5 dBA, and L_{Aeq} was 39.4 dBA on that date. Noises associated with the mine (trucks and/or possible drilling operations) were audible on July 28, 2021, with equivalent continuous sound (L_{Aeq}) of 50.7 dBA. Other observed noises included wind, wildlife, thunder, voices, and distant traffic and chainsaws within the subdivision. The maximum sound ranged from 55.1 to 62.9 dBA.

/SND-06: This site is a paired location with Wharf meter 1249 located on the east side of the Wharf-owned overflow ski parking lot. Most noises were distant traffic and construction along the roads and within the subdivision. No noises attributable to the mine were observed. Other observed noises included wind, wildlife, airplanes, truck backup alarms within the overflow.
<table>
<thead>
<tr>
<th>Site I.D.</th>
<th>Time Start Monitoring (D/M/Y H:M)</th>
<th>Monitoring Duration (min:sec)</th>
<th>Maximum Reading (L_{\text{max}})</th>
<th>Minimum Reading (L_{\text{min}}) dBA</th>
<th>Average of the Readings (L_{50}) dBA</th>
<th>Sound Level Just Exceeded for 90% of the Measurement Period (L_{90}) dBA</th>
<th>Equivalent Continuous Sound Level (L_{eq}) dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND-01</td>
<td>7/13/2021 11:21</td>
<td>09:57</td>
<td>65.6</td>
<td>33.4</td>
<td>38</td>
<td>36</td>
<td>42.8</td>
</tr>
<tr>
<td>SND-01</td>
<td>7/13/2021 13:45</td>
<td>10:42</td>
<td>66.4</td>
<td>37</td>
<td>45</td>
<td>41</td>
<td>48.8</td>
</tr>
<tr>
<td>SND-01</td>
<td>7/20/2021 12:14</td>
<td>09:52</td>
<td>61</td>
<td>37.1</td>
<td>44</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>SND-01</td>
<td>7/28/2021 10:29</td>
<td>16:00</td>
<td>86.9</td>
<td>37.3</td>
<td>44</td>
<td>41</td>
<td>61.5</td>
</tr>
<tr>
<td>SND-01</td>
<td>5/3/2022 12:45</td>
<td>10:50</td>
<td>74.7</td>
<td>36.8</td>
<td>46</td>
<td>43</td>
<td>50.9</td>
</tr>
<tr>
<td>SND-02</td>
<td>7/13/2021 11:03</td>
<td>10:29</td>
<td>68.3</td>
<td>33.2</td>
<td>37</td>
<td>36</td>
<td>43.4</td>
</tr>
<tr>
<td>SND-02</td>
<td>7/13/2021 13:31</td>
<td>10:22</td>
<td>59.2</td>
<td>35.4</td>
<td>42</td>
<td>38</td>
<td>43.3</td>
</tr>
<tr>
<td>SND-02</td>
<td>7/20/2021 12:28</td>
<td>10:15</td>
<td>69.3</td>
<td>34</td>
<td>40</td>
<td>36</td>
<td>47.7</td>
</tr>
<tr>
<td>SND-02</td>
<td>7/28/2021 10:49</td>
<td>10:55</td>
<td>67.6</td>
<td>33</td>
<td>36</td>
<td>34</td>
<td>44.2</td>
</tr>
<tr>
<td>SND-02</td>
<td>5/3/2022 12:30</td>
<td>10:31</td>
<td>56.5</td>
<td>35</td>
<td>44</td>
<td>40</td>
<td>46.1</td>
</tr>
<tr>
<td>SND-03</td>
<td>7/13/2021 10:44</td>
<td>09:56</td>
<td>74</td>
<td>41.7</td>
<td>51</td>
<td>48</td>
<td>52.6</td>
</tr>
<tr>
<td>SND-03</td>
<td>7/13/2021 13:14</td>
<td>10:04</td>
<td>59.6</td>
<td>39.3</td>
<td>47</td>
<td>44</td>
<td>48.4</td>
</tr>
<tr>
<td>SND-03</td>
<td>7/20/2021 13:06</td>
<td>10:57</td>
<td>59.8</td>
<td>35.6</td>
<td>43</td>
<td>38</td>
<td>46.5</td>
</tr>
<tr>
<td>SND-03</td>
<td>7/28/2021 9:38</td>
<td>10:08</td>
<td>66.2</td>
<td>36.3</td>
<td>46</td>
<td>40</td>
<td>51.2</td>
</tr>
<tr>
<td>SND-03</td>
<td>5/3/2022 11:15</td>
<td>11:40</td>
<td>66.7</td>
<td>34.6</td>
<td>48</td>
<td>41</td>
<td>50.9</td>
</tr>
<tr>
<td>SND-04</td>
<td>7/13/2021 10:27</td>
<td>10:18</td>
<td>71.8</td>
<td>41.7</td>
<td>50</td>
<td>46</td>
<td>54.3</td>
</tr>
<tr>
<td>SND-04</td>
<td>7/13/2021 13:01</td>
<td>09:52</td>
<td>68.7</td>
<td>32.6</td>
<td>39</td>
<td>35</td>
<td>46.7</td>
</tr>
<tr>
<td>SND-04</td>
<td>7/20/2021 11:35</td>
<td>10:15</td>
<td>75.1</td>
<td>35.9</td>
<td>48</td>
<td>39</td>
<td>55.9</td>
</tr>
<tr>
<td>SND-04</td>
<td>7/28/2021 9:24</td>
<td>10:10</td>
<td>77.8</td>
<td>34.6</td>
<td>45</td>
<td>38</td>
<td>57.9</td>
</tr>
<tr>
<td>SND-04</td>
<td>5/3/2022 10:56</td>
<td>12:09</td>
<td>73.6</td>
<td>35.1</td>
<td>47</td>
<td>40</td>
<td>54.5</td>
</tr>
<tr>
<td>SND-05</td>
<td>7/13/2021 11:50</td>
<td>15:04</td>
<td>61.5</td>
<td>32.6</td>
<td>36</td>
<td>35</td>
<td>39.4</td>
</tr>
<tr>
<td>SND-05</td>
<td>7/13/2021 14:00</td>
<td>10:20</td>
<td>55.1</td>
<td>40.1</td>
<td>45</td>
<td>43</td>
<td>46.1</td>
</tr>
<tr>
<td>SND-05</td>
<td>7/20/2021 11:54</td>
<td>15:35</td>
<td>55.8</td>
<td>36.6</td>
<td>41</td>
<td>39</td>
<td>42.3</td>
</tr>
<tr>
<td>SND-05</td>
<td>7/28/2021 10:12</td>
<td>12:59</td>
<td>62.2</td>
<td>38</td>
<td>50</td>
<td>47</td>
<td>50.7</td>
</tr>
<tr>
<td>SND-05</td>
<td>5/4/2022 11:58</td>
<td>10:27</td>
<td>62.9</td>
<td>37.3</td>
<td>48</td>
<td>44</td>
<td>48.4</td>
</tr>
<tr>
<td>SND-06</td>
<td>7/13/2021 12:14</td>
<td>10:05</td>
<td>71.4</td>
<td>33.4</td>
<td>40</td>
<td>37</td>
<td>51.8</td>
</tr>
<tr>
<td>SND-06</td>
<td>7/13/2021 14:17</td>
<td>10:14</td>
<td>63.9</td>
<td>40</td>
<td>48</td>
<td>43</td>
<td>49.1</td>
</tr>
<tr>
<td>SND-06</td>
<td>7/20/2021 12:51</td>
<td>10:01</td>
<td>59</td>
<td>35.4</td>
<td>42</td>
<td>39</td>
<td>44.1</td>
</tr>
<tr>
<td>SND-06</td>
<td>7/28/2021 9:51</td>
<td>10:22</td>
<td>51.8</td>
<td>34.9</td>
<td>39</td>
<td>37</td>
<td>40.5</td>
</tr>
<tr>
<td>SND-06</td>
<td>5/3/2022 11:31</td>
<td>14:13</td>
<td>60.3</td>
<td>33.7</td>
<td>42</td>
<td>38</td>
<td>45.0</td>
</tr>
<tr>
<td>SND-07</td>
<td>5/3/2022 12:15</td>
<td>10:52</td>
<td>67.2</td>
<td>31.7</td>
<td>45</td>
<td>38</td>
<td>47.7</td>
</tr>
<tr>
<td>SND-07</td>
<td>5/3/2022 13:55</td>
<td>13:12</td>
<td>78.7</td>
<td><30.0</td>
<td>42</td>
<td>37</td>
<td>55.1</td>
</tr>
</tbody>
</table>

D/M/Y = day/month/year
H:M:S = hours:minutes:seconds
min:sec = minutes:seconds.
parking lot, and the hum of a generator that powers a temporary portable office trailer currently being used by Montana Dakota Utilities Co. (MDU) for project staging in the parking lot. The maximum sound ranged from 51.8 to 71.4 dBA.

/SND-07/: Site SND-07 is located on Last Chance Trail, approximately 360 feet southwest of the intersection with Antelope Trail and southeast of the Boston Expansion. The maximum sound recorded ranged from 67.2 to 78.7 dBA. Noises at this site were predominantly related to local traffic within the subdivision. Other noises included light wind, wildlife, distant voices and music, and distant noises related to construction within the subdivision (skid steer, hammering, and chop saw). No noises attributable to the mine were observed.

The overall range in sound measurements collected by RESPEC ranged from 31.7 to 86.9 dBA. The maximum sound levels were brief momentary highs and related to traffic in almost every instance. LAeq values ranged from 39.4 to 61.5 dB, which are equivalent to the sound levels found in a typical living room to a busy office setting (see Table 3-2).

4.2 WHARF RESULTS

As part of this investigation, RESPEC reviewed sound-monitoring data collected by Wharf with emphasis on comparing simultaneous measurements by Wharf and RESPEC as well as a review of a select period of data. Wharf has been monitoring sound at two meters (i.e., meters 1248 and 1249) located at the closest residence and the overflow parking lot. Monitoring data have been collected at 5-minute-average intervals since April 20, 2021. RESPEC reviewed Wharf sound data collected between April 20, 2021, through July 27, 2021, and April 24, 2022, through May 8, 2022. Note, meter 1249 was offline from April 23 through 30, 2021, because the 3G data connector wasn’t properly transmitting data. Sound data from over the review period are plotted in Appendix C; additional Wharf data from over the period of record are available in electronic format upon request. Wharf’s sound meters record a sound clip for each measurement over 60 dBA. RESPEC’s staff listened to a selection of sound clips with a focus on the events with the highest readings and those that coincided with the time period in which Wharf typically conducts blasts.

A summary of the sound data collected by Wharf between April 20, 2021, through July 27, 2021, is provided in Table 4-2. Over this time period, sound levels ranged from 22.87 to 103.03 dBA at meter 1248. Sixty 5-minute intervals recorded sound levels exceeding 85 dBA. Over one-half of these recordings occurred during the late afternoon or evening hours; few, if any, records were triggered during times typical of blast events (12 p.m. to 4 p.m.). Wharf does not conduct blasting after 4:30 p.m. or in the evening. Based on the review of sound clips of events exceeding 85 dBA, most high-sound levels are associated with thunderstorms, wind, wildlife, voices, or vehicles. Sound levels at meter 1249 were generally similar. Sound readings ranged from 22.78 to 101.73 dBA, and 49 readings exceeded 85 dBA.

<table>
<thead>
<tr>
<th>Meter</th>
<th>Smallest L_{A90} Value (dBA)</th>
<th>Maximum (dBA)</th>
<th>Smallest L_{Aeq} (dBA)</th>
<th>Largest L_{Aeq} (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1248</td>
<td>22.87</td>
<td>103.03</td>
<td>24.77</td>
<td>74.52</td>
</tr>
<tr>
<td>1249</td>
<td>22.78</td>
<td>101.73</td>
<td>23.33</td>
<td>78.87</td>
</tr>
</tbody>
</table>
A summary of data over the 2-week period from April 24, 2022, through May 8, 2022, is provided in Table 4-3. Over this time period, sound levels ranged from 24.0 to 97.2 dBA at meter 1248. Nine 5-minute intervals recorded sound levels exceeding 85 dBA. Sound levels at meter 1249 were generally similar, with sound readings that ranged from 22.66 to 97.44 dBA and 25 readings exceeded 85 dBA. The majority of these high-sound recordings occurred during midday hours with a few night readings, and all recordings RESPEC listened to were associated with weather events (wind, rain, and thunder) that occurred on April 24 and 29, 2022.

<table>
<thead>
<tr>
<th>Meter</th>
<th>Smallest LA90 Value (dBA)</th>
<th>Maximum (dBA)</th>
<th>Smallest LAeq (dBA)</th>
<th>Largest LAeq (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1248</td>
<td>24.0</td>
<td>97.2</td>
<td>25.24</td>
<td>76.31</td>
</tr>
<tr>
<td>1249</td>
<td>22.66</td>
<td>97.44</td>
<td>23.27</td>
<td>76.15</td>
</tr>
</tbody>
</table>

At Site SND-05 and meter 1248, all of the LAmax and LAeq values measured by RESPEC were within the range of values recorded by Wharf, as shown in Table 4-4. LAeq values for RESPEC and Wharf data were similar, and all values were within a few decibels of each other; however, Lmax values measured by RESPEC were lower than the highest Wharf-measured values except for on May 3, 2022.

Site SND-05/1248 was intentionally monitored during a blast to monitor blast noise and compare monitoring instruments. At the time of the blast (approximately 12:03 p.m. on July 13, 2021), the LAmax value was 66.3 dBA at Wharf meter 1248 compared to an LAmax value of 61.5 dBA at Site SND-05.

Site SND-06 was a paired location with meter 1249 at the overflow parking lot. LAeq values for RESPEC and Wharf data were similar, and all values were within a few decibels of each other, as shown in Table 4-4. During the first three monitoring events, the LAmax data collected were similar. However, on July 28, 2021, Wharf meter 1249 had an LAmax value of 74.72 dBA and RESPEC measured an LAmax value of only 51.8 dBA.

Discrepancies between datasets may be caused by differences in instrument type, calibration, meter height, or other unaccounted metrics. Wharf’s continuous sound meters and recordings appear to be working adequately and will serve to provide reliable sound data into the foreseeable future.

4.3 HISTORICAL DATA COMPARISON

Data collected by Kliche [2010] for the paired sites that RESPEC monitored for this investigation are provided in Table 4-5. Sound levels measured in 2021–2022 were generally similar to those measured in 2010. Site SND-01/Point 1 was slightly noisier (higher average maximum sound) in 2021–2022 compared to 2010, although LA50 values were of similar magnitude. At SND-03/Point 10, L50 levels were higher on average in 2021–2022, and at SND-05/Point 9, the average LAeq values were slightly higher in 2021–2022. During 2010, most peak sounds were associated with “wind, wildlife (woodpeckers) or far off traffic noise” that included motorcycles [Kliche, 2010].
<table>
<thead>
<tr>
<th>Time Start (M/D/Y H:M)</th>
<th>Duration (min:sec)</th>
<th>$L_{A\text{max}}$ (dBA)</th>
<th>$L_{A\text{eq}}$ (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/13/2021 11:50</td>
<td>15:04</td>
<td>61.5</td>
<td>39.4</td>
</tr>
<tr>
<td>7/13/2021 11:55</td>
<td>5:00</td>
<td>54.57</td>
<td>41.39</td>
</tr>
<tr>
<td>7/13/2021 12:00</td>
<td>5:00</td>
<td>47.32</td>
<td>35.81</td>
</tr>
<tr>
<td>7/13/2021 12:05</td>
<td>5:00</td>
<td>66.3</td>
<td>42.08</td>
</tr>
<tr>
<td>7/13/2021 14:00</td>
<td>5:00</td>
<td>52.57</td>
<td>43.15</td>
</tr>
<tr>
<td>7/13/2021 14:00</td>
<td>10:20</td>
<td>55.1</td>
<td>46.1</td>
</tr>
<tr>
<td>7/13/2021 14:05</td>
<td>5:00</td>
<td>68.57</td>
<td>47.8</td>
</tr>
<tr>
<td>7/13/2021 14:10</td>
<td>5:00</td>
<td>50.73</td>
<td>46.66</td>
</tr>
<tr>
<td>7/20/2021 11:54</td>
<td>15:35</td>
<td>55.8</td>
<td>42.3</td>
</tr>
<tr>
<td>7/20/2021 11:55</td>
<td>5:00</td>
<td>74.45</td>
<td>47.84</td>
</tr>
<tr>
<td>7/20/2021 12:00</td>
<td>5:00</td>
<td>60.49</td>
<td>43.64</td>
</tr>
<tr>
<td>7/20/2021 12:05</td>
<td>5:00</td>
<td>50.21</td>
<td>44.31</td>
</tr>
<tr>
<td>7/20/2021 12:10</td>
<td>5:00</td>
<td>49.86</td>
<td>44.42</td>
</tr>
<tr>
<td>7/28/2021 10:10</td>
<td>5:00</td>
<td>58.16</td>
<td>53.45</td>
</tr>
<tr>
<td>7/28/2021 10:12</td>
<td>12:59</td>
<td>62.2</td>
<td>50.7</td>
</tr>
<tr>
<td>7/28/2021 10:15</td>
<td>5:00</td>
<td>75.8</td>
<td>54.26</td>
</tr>
<tr>
<td>7/28/2021 10:20</td>
<td>5:00</td>
<td>64.43</td>
<td>53.84</td>
</tr>
<tr>
<td>7/28/2021 10:25</td>
<td>5:00</td>
<td>67.58</td>
<td>50.96</td>
</tr>
<tr>
<td>5/3/2022 11:55</td>
<td>5:00</td>
<td>50.93</td>
<td>44.74</td>
</tr>
<tr>
<td>5/3/2022 11:58</td>
<td>10:27</td>
<td>62.9</td>
<td>48.4</td>
</tr>
<tr>
<td>5/3/2022 12:00</td>
<td>5:00</td>
<td>58.57</td>
<td>48.06</td>
</tr>
<tr>
<td>5/3/2022 12:05</td>
<td>5:00</td>
<td>55.5</td>
<td>49.8</td>
</tr>
</tbody>
</table>

Wharf data in blue text; RESPEC data in black text.
Table 4-5. Site SND-06 and Wharf Meter 1249 Sound-Data Comparison

<table>
<thead>
<tr>
<th>Time Start (M/DD/YYYY HH:MM)</th>
<th>Duration (min:sec)</th>
<th>$L_{A\text{max}}$</th>
<th>$L_{A\text{eq}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/13/2021 12:14</td>
<td>10:05</td>
<td>71.4</td>
<td>51.8</td>
</tr>
<tr>
<td>7/13/2021 12:15</td>
<td>5:00</td>
<td>59.09</td>
<td>41.87</td>
</tr>
<tr>
<td>7/13/2021 12:20</td>
<td>5:00</td>
<td>72.41</td>
<td>56.74</td>
</tr>
<tr>
<td>7/13/2021 14:17</td>
<td>10:14</td>
<td>63.9</td>
<td>49.1</td>
</tr>
<tr>
<td>7/13/2021 14:20</td>
<td>5:00</td>
<td>61.99</td>
<td>49.35</td>
</tr>
<tr>
<td>7/13/2021 14:25</td>
<td>5:00</td>
<td>67.05</td>
<td>51.64</td>
</tr>
<tr>
<td>7/20/2021 12:50</td>
<td>5:00</td>
<td>54.44</td>
<td>45.31</td>
</tr>
<tr>
<td>7/20/2021 12:51</td>
<td>10:01</td>
<td>59</td>
<td>44.1</td>
</tr>
<tr>
<td>7/20/2021 12:55</td>
<td>5:00</td>
<td>58.59</td>
<td>45.92</td>
</tr>
<tr>
<td>7/20/2021 13:00</td>
<td>5:00</td>
<td>52.7</td>
<td>43.89</td>
</tr>
<tr>
<td>7/28/2021 9:50</td>
<td>5:00</td>
<td>56.74</td>
<td>41.73</td>
</tr>
<tr>
<td>7/28/2021 9:51</td>
<td>10:22</td>
<td>51.8</td>
<td>40.5</td>
</tr>
<tr>
<td>7/28/2021 9:55</td>
<td>5:00</td>
<td>74.72</td>
<td>46.83</td>
</tr>
<tr>
<td>7/28/2021 10:00</td>
<td>5:00</td>
<td>49.93</td>
<td>41.96</td>
</tr>
<tr>
<td>5/3/2022 11:30</td>
<td>5:00</td>
<td>68.3</td>
<td>51.47</td>
</tr>
<tr>
<td>5/3/2022 11:31</td>
<td>14:13</td>
<td>60.3</td>
<td>45</td>
</tr>
<tr>
<td>5/3/2022 11:35</td>
<td>5:00</td>
<td>53.03</td>
<td>43.68</td>
</tr>
<tr>
<td>5/3/2022 11:40</td>
<td>5:00</td>
<td>55.1</td>
<td>43.9</td>
</tr>
<tr>
<td>5/3/2022 11:45</td>
<td>5:00</td>
<td>60.25</td>
<td>43.91</td>
</tr>
</tbody>
</table>

Wharf data in blue text; RESPEC data in black text.
Table 4-6. Sound-Monitoring Data From Kliche [2010]

<table>
<thead>
<tr>
<th>Kliche Site I.D. (RESPEC Site I.D.)</th>
<th>Date (M/D/Y)</th>
<th>Maximum Sound (dB)</th>
<th>Minimum Sound (dB)</th>
<th>LA50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1 (SND-01)</td>
<td>7/5/2020</td>
<td>78.5</td>
<td>31.2</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>7/13/2010</td>
<td>63.3</td>
<td>28.4</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>42.5</td>
<td>38.4</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>53.5</td>
<td>41.4</td>
<td>46</td>
</tr>
<tr>
<td>Point 2 (SND-02)</td>
<td>7/5/2020</td>
<td>67.4</td>
<td>29.5</td>
<td>37.7</td>
</tr>
<tr>
<td></td>
<td>7/13/2010</td>
<td>67.5</td>
<td>25.1</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>52.8</td>
<td>26.9</td>
<td>29.4</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>53</td>
<td>37.6</td>
<td>43.1</td>
</tr>
<tr>
<td>Point 10 (SND-03)</td>
<td>7/5/2020</td>
<td>67</td>
<td>32.3</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>7/13/2010</td>
<td>59.8</td>
<td>33.5</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>60.2</td>
<td>36</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>70.3</td>
<td>45</td>
<td>47.8</td>
</tr>
<tr>
<td>Point 4 (SND-04)</td>
<td>7/5/2020</td>
<td>84.4</td>
<td>34</td>
<td>39.2</td>
</tr>
<tr>
<td></td>
<td>7/13/2010</td>
<td>75.3</td>
<td>28.4</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>61.9</td>
<td>34.5</td>
<td>41.1</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>73</td>
<td>42.9</td>
<td>48.9</td>
</tr>
<tr>
<td>Point 9 (SND-05)</td>
<td>7/5/2020</td>
<td>74.9</td>
<td>27.7</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>7/13/2010</td>
<td>60.4</td>
<td>29.2</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>61.6</td>
<td>37.3</td>
<td>37.7</td>
</tr>
<tr>
<td></td>
<td>7/27/2010</td>
<td>49.7</td>
<td>41.2</td>
<td>46</td>
</tr>
</tbody>
</table>
5.0 SUMMARY

Wharf installed two fully automated, remote sound meters in April 2021 and has been conducting continuous sound monitoring since that time. RESPEC conducted sound monitoring at seven points for approximate 10-minute periods; monitoring occurred on 4 separate days (July 13, 20, and 28, 2021; and May 3, 2022). The locations of RESPEC sound-monitoring sites were established to provide paired locations with the two Wharf sound-monitoring stations (meters 1248 and 1249) as well as several of the same locations measured by Kliche [2010].

The sound measurements collected by RESPEC ranged from less than 30 to 86.9 dB. The maximum sound levels were brief momentary highs and related to local traffic in almost every instance. Equivalent continuous sound levels (L_{eq}) ranged from 39.4 to 61.5 dB. These L_{eq} levels are equivalent to that found in a typical living room to busy office setting.

Compared to 2010 sound data [Kliche 2010], noise in the area is slightly higher. ATV usage seems to have significantly increased in the last decade, and much of the noise in 2021–2022 is attributed to ATVs and traffic. Other sounds observed were related to wind, wildlife, airplanes, thunder, construction, and mining activities.

The only verifiable recorded mine activities were at Site SND-05. A scheduled blast event at the Flossie Pit was recorded on July 13, 2021; the blast as well as the pre- and postblast sirens were audible. On July 28, noise associated with the mine operations just over the hill was audible, which included trucks and possible drilling operations; on that date, the maximum sound recorded was 62.2 dBA.

Under the proposed Boston Expansion, the highwall will be pushed back to the south approximately 400 feet and some trees and vegetation will be removed. Noise is expected to temporarily increase for initial blasts at the top of the Portland Ridgeline and will then likely return to current baseline levels after the upper benches are complete. Although sound is greatest where there is a line of sight, there are minimal areas south of Wharf where there is a line of sight of the Boston Expansion area.
6.0 REFERENCES

Apa, M., 1987. *Background Sound Analysis for Proposed Mining Site*, prepared for Golden Reward Mining Company, Lead, SD.

Apa, M., 1993. *Baseline Sound Level Studies for Wharf Resources Clinton Extension*, prepared for Wharf Resources, Lead, SD.

Erickson, J. D., 1988. *Wharf Resources Mining Company Sound Level Study*, prepared for Wharf Resources, Lead, SD.

Kliche, C. A., 2010. *Background Sound-Level Study Wharf Resources for the Golden Reward and Wharf Mine Expansions*, prepared for Wharf Resources (USA) Inc., Lead, SD, by South Dakota School of Mines and Technology, Rapid City, SD.
GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Weighted Frequency</td>
<td>The A-weighting curve is used extensively for general-purpose noise measurements</td>
</tr>
<tr>
<td>$L_{A_{eq}}$</td>
<td>A-weighted, equivalent continuous sound level</td>
</tr>
<tr>
<td>$L_{A_{max}}$</td>
<td>A-weighted, maximum sound level</td>
</tr>
<tr>
<td>$L_{A_{min}}$</td>
<td>A-weighted, minimum sound level</td>
</tr>
<tr>
<td>$L_{A_{10}}$</td>
<td>The A-weighted, sound level just exceeded for 10 percent of the measurement period and calculated by statistical analysis</td>
</tr>
<tr>
<td>$L_{A_{50}}$</td>
<td>The A-weighted, sound level just exceeded for 50 percent of the measurement period and calculated by statistical analysis</td>
</tr>
<tr>
<td>$L_{A_{90}}$</td>
<td>The A-weighted, sound level just exceeded for 90 percent of the measurement period and calculated by statistical analysis</td>
</tr>
<tr>
<td>C-Weighted Frequency</td>
<td>C-weighting is used for high-level measurements and peak sound pressure levels. Approximately following the 100 phon curve; also written as dB(C) or dBC</td>
</tr>
<tr>
<td>$L_{C_{eq}}$</td>
<td>C-weighted, equivalent continuous sound level</td>
</tr>
<tr>
<td>$L_{C_{max}}$</td>
<td>C-weighted, maximum sound level</td>
</tr>
<tr>
<td>$L_{C_{10}}$</td>
<td>The C-weighted, sound level just exceeded for 10 percent of the measurement period and calculated by statistical analysis</td>
</tr>
<tr>
<td>$L_{C_{90}}$</td>
<td>The C-weighted, sound level just exceeded for 90 percent of the measurement period and calculated by statistical analysis</td>
</tr>
</tbody>
</table>
APPENDIX A
SITE PHOTOGRAPHS
Figure A-1, Site SND-01.
Figure A-2. Site SND-02.
Figure A-3. Site SND-03.
Figure A-5. Site SND-05.
Figure A-6, Site SND-06.
Pre-Trigger/Record Time: 0.00 sec/597.5 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND1

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713112118.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone:
LMax: 65.6 dB(A)
Time (Relative to Trigger): 337.663 sec
LMin L50 L90: 33.4 38 36
Sound(dB(A)): 33.4 38 36
Sensor Check: ✔ Passed
Test Amplitude: 1180 mv

Graph:
- Frequency range: 0 to 80 dB(A)
- Time range: 0 to 500 seconds
- Key notes: L50 and L90 levels

Microphone A-Weight Fast:
- LMax: 65.6 dB(A)
- Time (Relative to Trigger): 337.663 sec
- LMin L50 L90: 33.4 38 36
- Sound(dB(A)): 33.4 38 36
- Sensor Check: ✔ Passed
- Test Amplitude: 1180 mv

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
Pre-Trigger/Record Time: 0.00 sec/642.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND1

Post Event Notes: No text to be displayed.

Sound Level Microphone
- LMax: 66.4 dB(A)
- Time (Relative to Trigger): 146.681 sec
- LMin, L50, L90: 37.0, 45, 41
- Sensor Check: Passed
- Test Amplitude: 1199 mv

Graph showing sound level over time with markers for L50 and L90.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Trigger/Record Time</td>
<td>0.00 sec/592.0 sec (Fixed)</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>1024 sps</td>
</tr>
<tr>
<td>Setup File Name</td>
<td>UM14409.MMB</td>
</tr>
<tr>
<td>Operator</td>
<td>SND1</td>
</tr>
<tr>
<td>Serial Number</td>
<td>UM14409</td>
</tr>
<tr>
<td>Model Number</td>
<td>Micromate ISEE 10.90</td>
</tr>
<tr>
<td>Battery Level</td>
<td>3.8 volts</td>
</tr>
<tr>
<td>Unit Calibration</td>
<td>March 22, 2021 by Instantel</td>
</tr>
<tr>
<td>Microphone Calibration</td>
<td>UA10072, July 6, 2021 by Instantel</td>
</tr>
<tr>
<td>Event File Name</td>
<td>UM14409_20210720121421.IDFW</td>
</tr>
<tr>
<td>USB Sensor Support</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Post Event Notes: No text to be displayed.

Sound Level Microphone
- **LMax:** 61.0 dB(A)
- **Time (Relative to Trigger):** 545.492 sec
- **Sound(dB(A))**
 - LMin: 37.1
 - L50: 44
 - L90: 39

- **Sensor Check:** Passed
- **Test Amplitude:** 1190 mv

Graph:
- **Time (sec):** 0 100 200 300 400 500
- **Sound(dB(A)):** 0 10 20 30 40 50 60 70
- **L50** and **L90** marked.
Pre-Trigger/Record Time: 0.00 sec/959.5 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND1

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210728102905.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone

- LMax: 86.9 dB(A)
- Time (Relative to Trigger): 930.637 sec

A-Weight Fast
- LMin: 37.3 dB(A)
- L50: 44 dB(A)
- L90: 41 dB(A)

Sensor Check: Passed
Test Amplitude: 1197 mv

Graph showing sound level over time with markers for L50 and L90.
Serial Number: UM15175
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: May 14, 2021 by Instantel
Microphone Calibration: UA10073, April 18, 2022 by Field Calibration
Event File Name: UM15175_20220503124521.IDFW
USB Sensor Support: Disabled

A-Weight Fast:
- LMax: 74.7 dB(A)
- LMin: 36.8 dB
- L50: 46 dB
- L90: 43 dB

Sensor Check: Passed

Sound(dB(A))
0 20 40 60 80 100
0 50 100 150

Time(sec)
0 100 200 300 400 500 600
Waveform Trigger Source: Manual at July 13, 2021 11:03:40
Pre-Trigger/Record Time: 0.00 sec/629.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND2

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713110340.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone
LMax: 68.3 dB(A)
Time (Relative to Trigger): 601.438 sec
LMin, L50, L90: 33.2, 37, 36
Sensor Check: Passed
Test Amplitude: 1180 mv

A-Weight Fast
LMax: 68.3 dB(A)
LMin, L50, L90: 33.2, 37, 36

Time (sec): 0 100 200 300 400 500 600
Sound (dB(A)): 0 20 40 60 80

Sensor Check: ✔ Passed
Test Amplitude: 1180 mv
Pre-Trigger/Record Time 0.00 sec/622.0 sec (Fixed)
Sample Rate 1024 sps
Setup File Name UM14409.MMB
Operator SND2

Serial Number UM14409
Model Number Micromate ISEE 10.90
Battery Level 3.8 volts
Unit Calibration March 22, 2021 by Instantel
Microphone Calibration UA10072, July 6, 2021 by Instantel
Event File Name UM14409_20210713133130.IDFW
USB Sensor Support Disabled

Post Event Notes No text to be displayed.

Sound Level Microphone
LMax 59.2 dB(A)
Time (Relative to Trigger) 618.120 sec
LMin L50 L90
35.4 42 38
Sound(dB(A))
Sensor Check ✔ Passed
Test Amplitude 1199 mv

Sensor Check ✔ Passed
Test Amplitude 1199 mv

Sound Level Microphone A-Weight Fast
LMax 59.2 dB(A)
Time (Relative to Trigger) 618.120 sec
LMin L50 L90
35.4 42 38
Sound(dB(A))
Sensor Check ✔ Passed
Test Amplitude 1199 mv

Created by version 1.3.0.12. Format © 2021 Xmark Corporation Page 1 / 2
Sound Level Microphone

A-Weight Fast

- LMax: 69.3 dB(A)
- Time (Relative to Trigger): 301.983 sec
- LMin, L50, L90:
 - LMin: 34.0 dB(A)
 - L50: 40 dB(A)
 - L90: 36 dB(A)

Sensor Check: Passed

Test Amplitude: 1190 mv
Waveform Trigger Source
Pre-Trigger/Record Time
Sample Rate
Setup File Name
Operator

Manual at July 28, 2021 10:49:00
0.00 sec/655.0 sec (Fixed)
1024 sps
UM14409.MMB
SND2

Serial Number
Model Number
Battery Level
Unit Calibration
Microphone Calibration
Event File Name
USB Sensor Support

UM14409
Micromate ISEE 10.90
3.8 volts
March 22, 2021 by Instantel
UA10072, July 6, 2021 by Instantel
UM14409_20210728104900.IDFW
Disabled

Sound Level Microphone
A-Weight Fast
Sound(dB(A))
Sensor Check
Test Amplitude

LMax
67.6 dB(A)
460.111 sec

LMin L50 L90
33.0 36 34

✔ Passed

Test Amplitude
1197 mv

Sound Level Microphone A-Weight Fast
LMax
Time (Relative to Trigger)
Sound(dB(A))
Sensor Check

LMax 67.6 dB(A)
460.111 sec
LMin 33.0
L50 36
L90 34

Sensor Check
✔ Passed

Post Event Notes
No text to be displayed.
General Notes

- **Serial Number**: UM15175
- **Model Number**: Micromate ISEE 10.90
- **Battery Level**: 3.8 volts
- **Unit Calibration**: May 14, 2021 by Instantel
- **Microphone Calibration**: UA10073, April 18, 2022 by Field Calibration
- **Event File Name**: UM15175_20220503123025.IDFW
- **USB Sensor Support**: Disabled

Sound Level Microphone

<table>
<thead>
<tr>
<th>Sound(dB(A))</th>
<th>LMax</th>
<th>A-Weight Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.5 dB(A)</td>
<td>5.431 sec</td>
<td>56.5 dB(A)</td>
</tr>
<tr>
<td>LMin</td>
<td>L50</td>
<td>L90</td>
</tr>
<tr>
<td>35.0 dB</td>
<td>44 dB</td>
<td>40 dB</td>
</tr>
</tbody>
</table>

Sensor Check
- **Passed**: Yes

Test Amplitude
- **Test Amplitude**: 809 mv

Plot

The plot shows the sound level over time with markers indicating the A-Weight Fast threshold at 56.5 dB(A) and L50 and L90 levels.

- **L50**: 35.0 dB
- **L90**: 44 dB

Manual at May 3, 2022 12:30:25
- **Pre-Trigger/Record Time**: Manual at May 3, 2022 12:30:25
- **Sample Rate**: 1024 sps
- **Setup File Name**: UM15175.MMB
- **Operator**: SND2

Notes
- **Location**: WHARF
- **Client**
- **Company**
- **General Notes**

Extended Notes: No text to be displayed.

Post Event Notes: No text to be displayed.
Post Event Notes
No text to be displayed.

<table>
<thead>
<tr>
<th>Sound Level Microphone</th>
<th>A-Weight Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMax</td>
<td>74.0 dB(A)</td>
</tr>
<tr>
<td>Time (Relative to Trigger)</td>
<td>314.033 sec</td>
</tr>
<tr>
<td>LMin</td>
<td>L50</td>
</tr>
<tr>
<td>41.7</td>
<td>51</td>
</tr>
<tr>
<td>Sensor Check</td>
<td>Passed</td>
</tr>
<tr>
<td>Test Amplitude</td>
<td>1180 mv</td>
</tr>
</tbody>
</table>

- **L50**: 51 dB(A)
- **L90**: 48 dB(A)
Waveform Trigger Source: Manual at July 13, 2021 13:14:00
Pre-Trigger/Record Time: 0.00 sec/604.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND3

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713131400.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone
LMax: 59.6 dB(A)
Time (Relative to Trigger): 566.364 sec
LMin, L50, L90: 39.3, 47, 44
Sound(dB(A))
Sensor Check: Passed
Test Amplitude: 1199 mv

![Waveform](image)
Waveform Trigger Source: Manual at July 20, 2021 13:06:30
Pre-Trigger/Record Time: 0.00 sec/657.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND3

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210720130630.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone
LMax: 59.8 dB(A)
Time (Relative to Trigger): 655.325 sec
LMin: 35.6
L50: 43
L90: 38
Sensor Check: Passed
Test Amplitude: 1170 mv

LMax
Time(sec)
0 100 200 300 400 500 600

Sound(dB(A))
0 10 20 30 40 50 60 70

L50
L90

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
Post Event Notes No text to be displayed.

Sound Level Microphone
LMax 66.2 dB(A)
Time (Relative to Trigger) 16.605 sec
Sound(dB(A))
Sensor Check ✔ Passed
Test Amplitude 1197 mv

Graph:
- L50
- L90
Pre-Trigger/Record Time: 0.00 sec/700.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM15175.MMB
Operator: SND3

Notes:
Location: WHARF
Client:
Company:
General Notes:
Extended Notes: No text to be displayed.
Post Event Notes: No text to be displayed.

Sound Level Microphone:
LMax: A-Weight Fast
66.7 dB(A)
424.725 sec
LMin
L50
L90
34.6
48
41
Sensor Check: Passed
Test Amplitude: 793 mv

Microphone Calibration:
UA10073, April 18, 2022 by Field Calibration

Event File Name: UM15175_20220503111525.IDFW
USB Sensor Support: Disabled

Serial Number: UM15175
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: May 14, 2021 by Instantel
Microphone Calibration: UA10073, April 18, 2022 by Field Calibration
Event File Name: UM15175_20220503111525.IDFW
USB Sensor Support: Disabled
Sound Level Microphone
- **LMax**: 71.8 dB(A)
- **Time (Relative to Trigger)**: 194.642 sec
- **LMin**
 - **L50**: 41.7 dB(A)
 - **L90**: 50 dB(A)

Test Amplitude
- **Test Amplitude**: 1206 mv

Sensitivity

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Sound (dB(A))</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Post Event Notes
No text to be displayed.
Pre-Trigger/Record Time: 0.00 sec/592.5 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND4

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713130113.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone
LMax: 68.7 dB(A)
Time (Relative to Trigger): 483.424 sec
LMin, L50, L90: 32.6, 39, 35
Sound(dB(A)): Passed
Test Amplitude: 1199 mv

USB Sensor Support: Disabled

Graph: Waveform with time (sec) on the x-axis and sound level (dB(A)) on the y-axis. L50 and L90 are marked on the graph.
Sound Level Microphone

- **LMax**: 75.1 dB(A)
- **Time (Relative to Trigger)**: 300.163 sec
- **LMin**, **L50**, **L90**: 35.9, 48, 39

Sensor Check: Passed

Test Amplitude: 1190 mv

Waveform Trigger Source
- Manual at July 20, 2021 11:35:51
- 0.00 sec/615.5 sec (Fixed)
- 1024 sps
- UM14409.MMB
- SND4

Serial Number
- UM14409

Model Number
- Micromate ISEE 10.90
 - 3.8 volts

Unit Calibration
- March 22, 2021 by Instantel
- UA10072, July 6, 2021 by Instantel

Microphone Calibration
- UA10072, July 6, 2021 by Instantel

Event File Name
- UM14409_20210720113551.IDFW

USB Sensor Support
- Disabled

Battery Level
- 3.8 volts

Unit Calibration
- March 22, 2021 by Instantel
- UA10072, July 6, 2021 by Instantel

Microphone Calibration
- UA10072, July 6, 2021 by Instantel

Event File Name
- UM14409_20210720113551.IDFW

USB Sensor Support
- Disabled

Post Event Notes
- No text to be displayed.
Post Event Notes No text to be displayed.

Sound Level Microphone A-Weight Fast
LMax 77.8 dB(A)
Time (Relative to Trigger) 181.805 sec
LMin L50 L90
34.6 45 38
Sensor Check Passed
Test Amplitude 1197 mv

L50
L90

Mca.
Sound(dB(A))

0 100 200 300 400 500 600
Time(sec)

0 20 40 60 80 100

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Trigger/Record Time</td>
<td>0.00 sec/729.5 sec (Fixed)</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>1024 sps</td>
</tr>
<tr>
<td>Setup File Name</td>
<td>UM15175.MMB</td>
</tr>
<tr>
<td>Operator</td>
<td>SND4</td>
</tr>
</tbody>
</table>

Serial Number	UM15175
Model Number	Micromate ISEE 10.90
Battery Level	3.8 volts
Unit Calibration	May 14, 2021 by Instantel
Microphone Calibration	UA10073, April 18, 2022 by Field Calibration
Event File Name	UM15175_20220503105656.IDFW
USB Sensor Support	Disabled

| Notes | Location | WHARF |

| Company | General Notes |

| Extended Notes | No text to be displayed. |
| Post Event Notes | No text to be displayed. |

Sound Level Microphone

LMax

Time (Relative to Trigger)

Sound(dB(A))

Sensor Check

Test Amplitude

802 mv

<table>
<thead>
<tr>
<th>L50</th>
<th>L90</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>40</td>
</tr>
</tbody>
</table>

A-Weight Fast

- **Time (sec)**: 49.177 sec
- **Sound(dB(A))**: 73.6 dB(A)

Test Amplitude

- **Sensor Check**: Passed
- **Test Amplitude**: 802 mv

Sensor Check

- **Passed**
Waveform Trigger Source: Manual at July 13, 2021 11:50:00
Pre-Trigger/Record Time: 0.00 sec/904.5 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SNDS

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713115000.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone:
- LMax: 61.5 dB(A)
- Time (Relative to Trigger): 697.345 sec
- LMin, L50, L90: 32.6, 36, 35
- Sensor Check: Passed
- Test Amplitude: 1187 mv

Sound Level Microphone A-Weight Fast:
- LMax: 61.5 dB(A)
- Time (Relative to Trigger): 697.345 sec
- LMin, L50, L90: 32.6, 36, 35
- Sensor Check: Passed
- Test Amplitude: 1187 mv

The graph depicts the sound levels over time, with the y-axis representing sound levels in dB(A) and the x-axis representing time in seconds. The graph shows the data collected during the event, including the maximum and minimum sound levels, as well as the levels at 50th and 90th percentiles (L50 and L90). The test amplitude is indicated as 1187 mv.
Waveform Trigger Source: Manual at July 13, 2021 14:00:35
Pre-Trigger/Record Time: 0.00 sec / 619.5 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND5

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713140035.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone:
- LMax: 55.1 dB(A)
- Time (Relative to Trigger): 592.579 sec
- LMin: 40.1 dB(A)
- L50: 45 dB(A)
- L90: 43 dB(A)
- Sensor Check: Passed
- Test Amplitude: 1199 mv

Sound Level Microphone A-Weight Fast:
- LMax: 55.1 dB(A)
- Time (Relative to Trigger) 592.579 sec
- LMin: 40.1 dB(A)
- L50: 45 dB(A)
- L90: 43 dB(A)

Sensor Check: ✔ Passed
Test Amplitude: 1199 mv
Post Event Notes

No text to be displayed.

Sound Level Microphone

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMax</td>
<td>55.8 dB(A)</td>
</tr>
<tr>
<td>Time (Relative to Trigger)</td>
<td>907.4 sec</td>
</tr>
<tr>
<td>LMin</td>
<td>36.6 dB(A)</td>
</tr>
<tr>
<td>L50</td>
<td>41 dB(A)</td>
</tr>
<tr>
<td>L90</td>
<td>39 dB(A)</td>
</tr>
</tbody>
</table>

Sensor Check

- Passed

Test Amplitude

- 1190 mv

Waveform Trigger Source

- Manual at July 20, 2021 11:54:30
- 0.00 sec/935.0 sec (Fixed)
- Sample Rate: 1024 sps
- Setup File Name: UM14409.MMB
- Operator: SND5

Serial Number

- UM14409

Model Number

- Micromate ISEE 10.90
- 3.8 volts
- March 22, 2021 by Instantel
- UA10072, July 6, 2021 by Instantel

Battery Level

- 3.8 volts

Unit Calibration

- March 22, 2021 by Instantel

Microphone Calibration

- UA10072, July 6, 2021 by Instantel

Event File Name

- UM14409_20210720115430.IDFW

USB Sensor Support

- Disabled

Sound Level Microphone A-Weight Fast

- LMax: 55.8 dB(A)
- Time (Relative to Trigger): 907.4 sec
- LMin: 36.6 dB(A)
- L50: 41 dB(A)
- L90: 39 dB(A)

Sensor Check

- Passed

Test Amplitude

- 1190 mv
Sound Level Microphone
LMax: 62.2 dB(A)
Time (Relative to Trigger): 772.068 sec
LMin: 38.0
L50: 50
L90: 47
Sensor Check: Passed
Test Amplitude: 1197 mv

Microphone Calibration: UA10072, July 6, 2021 by Instantel
Pre-Trigger/Record Time: 0.00 sec/627.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM15175.MMB
Operator: SNDS

Notes
Location: WHARF
Client
Company
General Notes

Extended Notes: No text to be displayed.
Post Event Notes: No text to be displayed.

Sound Level Microphone
LMax
Time (Relative to Trigger) 441.181 sec
Sound(dB(A))
Sensor Check
Test Amplitude 817 mv

A-Weight Fast
62.9 dB(A)
LMin L50 L90
37.3 48 44
Passed

Sensor Check
✔ Passed

Serial Number: UM15175
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: May 14, 2021 by Instantel
Microphone Calibration: UA10073, April 18, 2022 by Field Calibration
Event File Name: UM15175_20220503115817.IDFW
USB Sensor Support: Disabled

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
Pre-Trigger/Record Time: 0.00 sec/614.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM14409.MMB
Operator: SND6

Serial Number: UM14409
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: March 22, 2021 by Instantel
Microphone Calibration: UA10072, July 6, 2021 by Instantel
Event File Name: UM14409_20210713141723.IDFW
USB Sensor Support: Disabled

Post Event Notes: No text to be displayed.

Sound Level Microphone:
- LMax: 63.9 dB(A)
- Time (Relative to Trigger): 465.956 sec
- LMin: 40.0 dB(A)
- L50: 48 dB(A)
- L90: 43 dB(A)

Sensor Check: Passed
Test Amplitude: 1199 mv

Max. Sound Level (dB(A))

Time(sec)

0 100 200 300 400 500 600

0 20 40 60 80

L50
L90
Waveform Trigger Source
Manual at July 20, 2021 12:51:32

Pre-Trigger/Record Time
0.00 sec/600.5 sec (Fixed)

Sample Rate
1024 sps

Setup File Name
UM14409.MMB

Operator
SND6

Serial Number
UM14409

Model Number
Micromate ISEE 10.90

Battery Level
3.8 volts

Unit Calibration
March 22, 2021 by Instantel

Microphone Calibration
UA10072, July 6, 2021 by Instantel

Event File Name
UM14409_20210720125132.IDFW

USB Sensor Support
Disabled

Post Event Notes
No text to be displayed.

Sound Level Microphone

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMax</td>
<td>59.0 dB(A)</td>
</tr>
<tr>
<td>Time (Relative to Trigger)</td>
<td>529.771 sec</td>
</tr>
</tbody>
</table>

A-Weight Fast

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMin</td>
<td>35.4 dB(A)</td>
</tr>
<tr>
<td>L50</td>
<td>42 dB(A)</td>
</tr>
<tr>
<td>L90</td>
<td>39 dB(A)</td>
</tr>
</tbody>
</table>

Sensor Check
Passed

Test Amplitude
1170 mv

Sound Level Microphone Data

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Sound(dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>600</td>
<td>60</td>
</tr>
</tbody>
</table>

Sound(dB(A)) Graph

- LMax: 59.0 dB(A)
- LMin: 35.4 dB(A)
- L50: 42 dB(A)
- L90: 39 dB(A)

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
Sound Level Microphone
LMax 51.8 dB(A)
Time (Relative to Trigger) 50.931 sec
Sound(dB(A))
Sensor Check ✔ Passed
Test Amplitude 1197 mv

Microphone Calibration
UA10072, July 6, 2021 by Instantel

Unit Calibration
March 22, 2021 by Instantel
Waveform Trigger Source
Pre-Trigger/Record Time
Sample Rate
Setup File Name
Operator
Notes
Location
Client
Company
General Notes
Serial Number
Model Number
Battery Level
Unit Calibration
Microphone Calibration
Event File Name
USB Sensor Support

Serial Number: UM15175
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: May 14, 2021 by Instantel
Microphone Calibration: UA10073, April 18, 2022 by Field Calibration
Event File Name: UM15175_20220503113115.IDFW
USB Sensor Support: Disabled

Sound Level Microphone
LMax
Time (Relative to Trigger)
Sound(dB(A))
Sensor Check
Test Amplitude

Sensor Check: ✔ Passed
Test Amplitude: 813 mv

LMin L50 L90
33.7 42 38

A-Weight Fast
60.3 dB(A)
843.602 sec

Sound(dB(A))
Time(sec)
0 100 200 300 400 500 600 700 800
0 10 20 30 40 50 60 70

Manual at May 3, 2022 11:31:15
0.00 sec/853.0 sec (Fixed)
1024 sps
SN6D

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
Waveform Trigger Source
Pre-Trigger/Record Time
Sample Rate
Setup File Name
Operator

Notes
Location
Client
Company
General Notes

Extended Notes No text to be displayed.
Post Event Notes No text to be displayed.

Sound Level Microphone
LMax
Time (Relative to Trigger)
Sound(dB(A))
Sensor Check
Test Amplitude

A-Weight Fast
67.2 dB(A)
201.445 sec
LMin L50 L90
31.7 45 38
✔ Passed
807 mv

Manual at May 3, 2022 12:15:45
0.00 sec/652.0 sec (Fixed)
1024 sps
UM15175.MMB
SND7

Serial Number
UM15175

Model Number
Micromate ISEE 10.90

Battery Level
3.8 volts

Unit Calibration
May 14, 2021 by Instantel

Microphone Calibration
UA10073, April 18, 2022 by Field Calibration

Event File Name
UM15175_20220503121545.IDFW

USB Sensor Support
Disabled

Serial Number
UM15175

Model Number
Micromate ISEE 10.90

Battery Level
3.8 volts

Unit Calibration
May 14, 2021 by Instantel

Microphone Calibration
UA10073, April 18, 2022 by Field Calibration

Event File Name
UM15175_20220503121545.IDFW

USB Sensor Support
Disabled

Sound(dB(A))

Sensor Check
✔ Passed

Test Amplitude
807 mv
Pre-Trigger/Record Time: 0.00 sec/792.0 sec (Fixed)
Sample Rate: 1024 sps
Setup File Name: UM15175.MMB
Operator: SND7

Serial Number: UM15175
Model Number: Micromate ISEE 10.90
Battery Level: 3.8 volts
Unit Calibration: May 14, 2021 by Instantel
Microphone Calibration: UA10073, April 18, 2022 by Field Calibration
Event File Name: UM15175_20220503135550.IDFW
USB Sensor Support: Disabled

Notes:
Location: WHARF
Company: [Company Name]
General Notes: [General Notes]

Extended Notes: No text to be displayed.
Post Event Notes: No text to be displayed.

Sound Level Microphone:
- LMax: 78.7 dB(A)
- Time (Relative to Trigger): 240.281 sec
- LMin, L50, L90:
 - LMin: <30
 - L50: 42
 - L90: 37
- Sensor Check: Passed
- Test Amplitude: 799 mv

- A-Weight Fast: L50, L90
- Sensor Check: Passed
- Test Amplitude: [Graph Image]

Created by version 1.3.0.12. Format © 2021 Xmark Corporation
APPENDIX C
WHARF MONITORING DATA PLOTS