TOTAL SUSPENDEND SOLIDS (TSS) TOTAL MAXIMUM DAILY LOAD AND WATER QUALITY IMPROVEMENT PLAN FOR THE BIG SIOUX RIVER SEGMENTS 5 AND 6 BROOKINGS COUNTY, SOUTH DAKOTA

South Dakota Department of Agriculture and Natural Resources Division of Resource Conservation and Forestry Watershed Protection Program

2024

Table of Contents

1.0 Document Summary	. 2
2.0 Watershed Characteristics	. 2
2.1 Drainage Area and Precipitation	. 2
2.2 Geology and Soils	. 4
2.3 Demographics	. 6
2.4 Land use	. 6
3.0 South Dakota Water Quality Standards	. 8
3.1 Beneficial Uses	. 8
3.2 Water Quality Criteria	. 9
3.3 Total Suspended Solids Water Quality Criteria	10
3.4 Numeric TMDL Targets	10
4.0 Antidegradation	11
5.0 Assessment Methods	11
6.0 Source Assessment and Allocations	12
6.1 Point Sources	12
6.1.1 Wastewater Treatment Facilities	12
6.1.2 City of Brookings MS4 (NPDES Permit #SDR41A003)	15
6.1.3 CAFOs in the Watershed	19
6.2 Natural and Nonpoint Sources of Sedimentation	20
6.2.1 Sediment Load Estimates	20
7.0 Data Collection	21
7.1 Water Quality Data and Discharge Information	21
7.2 TSS Water Quality Data	21
7.3 Flow Information and Data	22
7.4 Rapid Geomorphic Assessment	23
8.0 TMDL Allocations	25
8.1 Margin of Safety (MOS)	25
8.2 Wasteload Allocations (WLA)	25
8.3 Load Allocations (LA)	26
9.0 Total Suspended Solids TMDL Loading Analysis	26
9.1 SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 TMDL Loading Analysis	26

9.1.1 High Flows	
9.1.2 Moist Conditions	
9.1.3 Mid-range Conditions	
9.1.4 Dry Conditions	
9.1.5 Low Flows	
10.0 Seasonality	
11.0 Critical Conditions	
12.0 Water Quality Improvement Plan and Monitoring Strategy	
12.1 Monitoring Strategy	
12.2 Implementation	
12.3 Adaptive Management	
12.4 Public Participation	
References	
Appendix A – Measured Discharge and TSS Data	
Appendix B – Construction Stormwater Permits	55
Appendix C – Simple Method Calculation Procedure	
Appendix D – High Impact Targeting (HIT) Model	
Appendix E – EPA Approval Letter and Decisions Document	59

List of Acronyms

Acronym	Definition
AFO	Animal Feeding Operation
ARSD	Administrative Rules of South Dakota
BMP	Best Management Practice
CAFO	Concentrated Animal Feeding Operation
cfs	Cubic Feet Per Second
CFU	Colony Forming Unit
CWA	Clean Water Act
DMR	Discharge Monitoring Report
SDDANR	South Dakota Department of Agriculture & Natural Resources
EDWDD	East Dakota Water Development District
EPA	Environmental Protection Agency (U.S.)
GM	Geometric Mean
HIT	High Impact Targeting Model
HUC	Hydrologic Unit Code
IR	Integrated Report (South Dakota's Report for Surface Water Quality)
LA	Load Allocation
LDC	Load Duration Curve
mL	Milliliter
MOS	Margin of Safety
MS4	Municipal Separate Storm Sewer System
NLCD	National Land Cover Dataset
NOAA	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System
RGA	Rapid Geomorphic Assessment
SDCL	South Dakota Codified Law
SSM	Single Sample Maximum
SWMP	Stormwater Management Project
SWMM	Stormwater Management Model
TMDL	Total Maximum Daily Load
TSS	Total Suspended Solids
USGS	United States Geological Survey
WLA	Wasteload Allocation
WPP	Watershed Protection Program (South Dakota)
WQM	Water Quality Monitoring
WWTP	Wastewater Treatment Plant
WWTF	Wastewater Treatment Facility

Big Sioux Segment 5 Total Maximum Daily Load Summary

Waterbody Type:

Reach Number:

303(d) Listing Parameter:

Designated Uses of Concern:

Location:

Size of Impaired Waterbody:

Associated HUCs:

River/Stream

SD-BS-R-BIG_SIOUX_05

Total Suspended Solids (TSS)

Warmwater Semipermanent Fish Life

Near Volga, SD to Brookings, SD

SD-BS-R-BIG_SIOUX_05 – Approximately 10.07 miles

Name	HUC12 - 156,710 acres
Medary Creek – Big	101702021110/Partial
Sioux River	
Lake Sinai	101702021108
Lower North Deer	101702020704
Creek	
Middle North Deer	101702020703
Creek	
Upper North Deer	101702020701
Creek	
Saint Pauls Church	101702020702
Lower Sixmile Creek	101702020602
Upper Sixmile Creek	101702020601

Indicator(s):	Concentration of Total Suspended Solids
Analytical Approach:	Load Duration Curve Framework
TMDL Priority Ranking:	Priority 1 (2024 IR)
Target (Water Quality Criteria):	Total Suspended Solids - Maximum daily concentration of ≤ 158 mg/L and a geometric mean of ≤ 90 mg/L for a thirty-day average of at least three consecutive grab or composite samples taken on separate weeks.

			BIG SIOUX 05 TMDL Table		
Warmwater Semipermanent Fish					
Life Propagation TSS TMDL	High Flows	Moist Conditions	Mid-Range Conditions	Dry Conditions	Low Flows
Flow Rate	≤ 10.0%	10 - 40.0%	40.0 - 60.0%	60.0 - 90.0%	$\geq 90.0\%$
WLA - City of Volga (Ton/day)	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
WLA - MS4	3.03E+01	6.33E+00	1.28E+00	6.11E-01	1.26E-01
LA	1.01E+03	2.11E+02	4.25E+01	2.03E+01	4.19E+00
10% Explicit MOS	1.15E+02	2.41E+01	4.87E+00	2.34E+00	4.87E-01
TMDL @ 90 mg/L	1.15E+03	2.41E+02	4.87E+01	2.34E+01	4.87E+00
Current Load	1.88E+03	5.78E+02	1.27E+02	4.31E+01	5.04E+00
Load Reduction	39%	58%	61.78%	45.78%	3.54%

Big Sioux Segment 6 Total Maximum Daily Load Summary

We task a la Tana a	River/Stream			
Waterbody Type:	Kivel/Sueani			
Reach Number:	SD-BS-R-BIG_SIOUX_06			
303(d) Listing Parameter:	Total Suspended Solids (7	CSS)		
Designated Uses of Concern:	Warmwater Semipermane	nt Fish Life		
Location:	Near Brookings, SD to Brookings/Moody County Line			
Size of Impaired Waterbody:	SD-BS-R-BIG_SIOUX_06– Approximately 8.12 miles,			
Associated HUCs:	NameHUC12 - 130,Medary Creek – Big101702021110Sioux RiverHUCFountain Cemetery101702021109Lake Campbell Outlet101702020805Lake Campbell – Battle101702020805CreekPelican Lake – BattleMud Lake101702020805Molumby Slough101702020805			
Indicator(s):	Concentration of Total	Suspended Solids		
Analytical Approach:	Load Duration Curve Framework			
TMDL Priority Ranking:	Priority 1 (2024 IR)			
Target (Water Quality Criteria):	Total Suspended Solids - Maximum daily concentration of \leq 158 mg/L and a geometric mean of \leq 90 mg/L for a thirty-day average of at least three consecutive grab or composite samples taken on separate weeks.			

		BIG S	IOUX 06 TMDL Ta	ıble	
Warmwater Semipermanent Fish			Mid-Range		
Life Propagation TSS TMDL	High Flows	Moist Conditions	Conditions	Dry Conditions	Low Flows
Flow Rate	$\leq 10.0\%$	10 - 40.0%	40.0 - 60.0%	60.0 - 90.0%	\geq 90.0%
WLA - City of Brookings WWTF	8.80E-01	8.80E-01	8.80E-01	8.80E-01	8.80E-01
WLA - MS4	3.80E+01	7.92E+00	1.57E+00	7.41E-01	1.33E-01
LA	1.17E+03	2.44E+02	4.86E+01	2.29E+01	4.09E+00
10% Explicit MOS	1.35E+02	2.81E+01	5.67E+00	2.72E+00	5.67E-01
TMDL @ 90 mg/L	1.35E+03	2.81E+02	5.67E+01	2.72E+01	5.67E+00
Current Load	1.19E+03	5.93E+02	1.42E+02	4.83E+01	7.57E+00
Load Reduction	0%	53%	60%	44%	25%

1.0 Document Summary

The Environmental Protection Agency (EPA) delegates authority to the South Dakota Department of Agriculture and Natural Resources (SD DANR) in accordance with Section 303(d) of the federal Clean Water Act (CWA), to develop impaired waters lists and Total Maximum Daily Load (TMDL) reports. The intent of this document is to clearly identify the components of the TMDL process and facilitate EPA review and approval. This TMDL document addresses the TSS impairment for segments SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 of the Big Sioux River in the Big Sioux River Basin. SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_05, 2022, and 2024 Integrated Report for Surface Water Quality Assessment (IR) and has been on the TMDL Vision Priority list since 2014. The segments SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 have been listed as non-supporting for warm water semipermanent fish life use due to total suspended solids violations and have subsequently been included on the biennial §303(d) lists since 2004.

2.0 Watershed Characteristics

SD-BS-R-BIG_SIOUX_05 is a ten-mile segment that extends near Volga, South Dakota to near Brookings, South Dakota. The SD-BS-R-BIG_SIOUX_05 watershed is approximately 156,710 acres. North Deer Creek and Six Mile Creek are the main tributaries of SD-BS-R-BIG_SIOUX_05 (*Figure 1*).

SD-BS-R-BIG_SIOUX_06 extends from Brookings, South Dakota to the Brookings/Moody County line. SD-BS-R-BIG_SIOUX_06 watershed and drainage area is approximately 130,394 acres. The Lake Campbell outlet is the main tributary to this segment.

2.1 Drainage Area and Precipitation

The totality of the Big Sioux River Basin drains approximately 8,282 square miles between eastern South Dakota, southwestern Minnesota, and northwestern Iowa. The average annual discharge of the Big Sioux River is approximately 246 cubic feet per second, and it is estimated, on average, to exceed bank full stage every 2-3 years (SD DANR, 2016). Precipitation largely occurs in the spring and summer months with about 23 inches a year on average (NOAA, 2023).

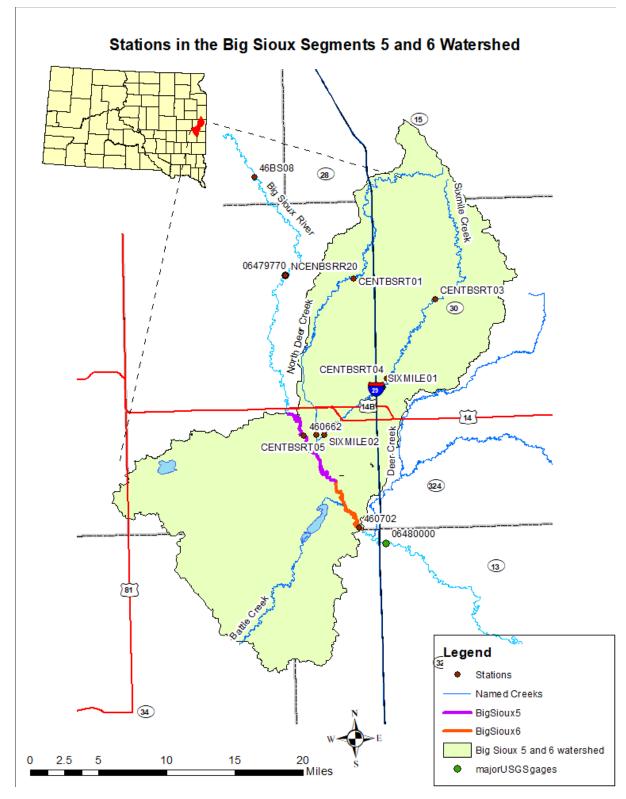


Figure 1 - Stations in the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 Watershed

2.2 Geology and Soils

The SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed are considered part of the Northern Glaciated Plains Ecoregion. This ecoregion is characterized by a flat, gently rolling landscape composed of glacial till. There are high concentrations of temporary and seasonal prairie pothole wetlands scattered across the landscape. The river itself sits atop a shallow alluvial layer. The watershed is made up of productive mollisols along with silty clay loams and clay loams (*Figure 2*). Several loams found in this watershed include Poinsett-Buse Waubay in the southwest, Barnes clay loams and Kranzburg-Brookings silty loams in the northeast. The southern-most end of the watershed is comprised of more frequent erodible soils (*Figure 3*).

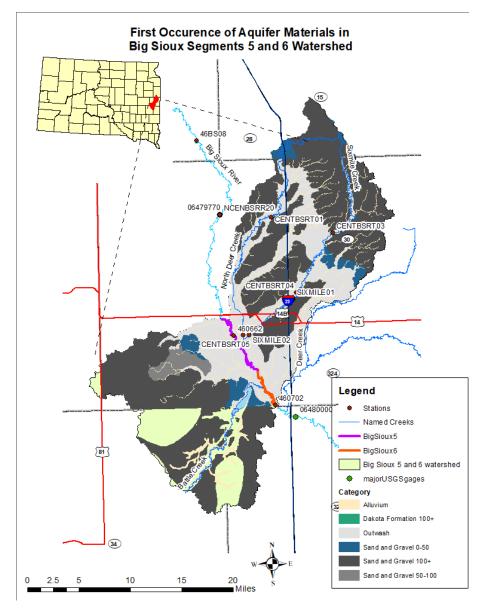


Figure 2 - Occurrence of Aquifer Material in Big Sioux Segments 5 and 6 Watershed

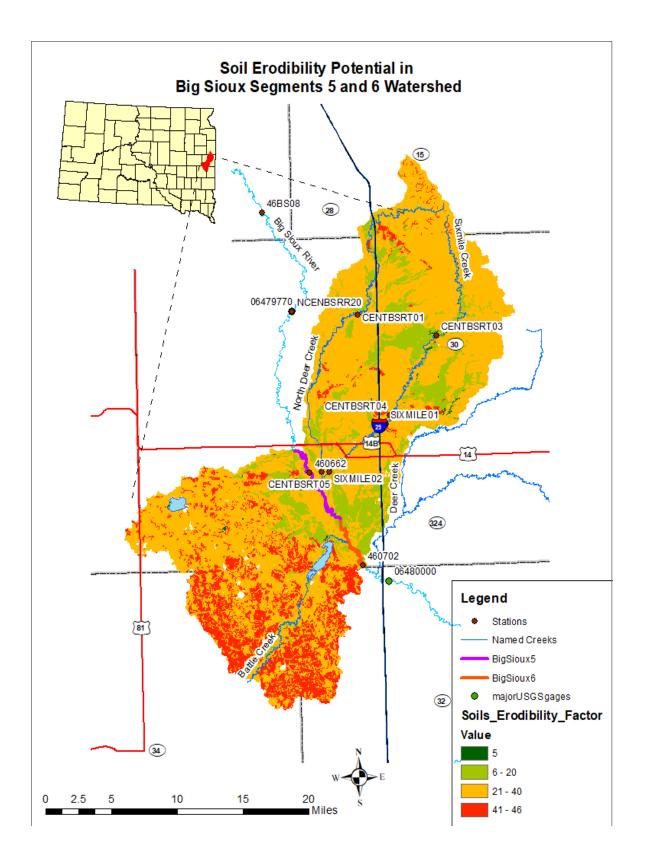


Figure 3 - Soil Erodibility Potential in Big Sioux Segment 5 and 6 Watershed

2.3 Demographics

Brookings County has an estimated population of 34,375 individuals according to the 2020 U.S Census Bureau. Towns in the watershed include Brookings (23,377), White (537), Toronto (196), Sinai (99) and Nunda (46). Deuel County has approximately 4,346 people, Lake and Moody Counties had 12,488 and 6,525 people, respectively. Using an area-based weighting and accounting for cities, an estimated 26,386 people live in the watershed with 755 rural folks and 25,631 people associated with towns.

2.4 Land use

The watershed is used extensively for agriculture, which comprised 88% of land area in 2017 and is approximately 6% developed. The National Land Cover Dataset (NLCD) was used to compare changes in land use from 2006 to 2017 and are shown in *Table 1*. Wetlands and forested areas have decreased since 2006 while grassland used for grazing has significantly increased over the years. Most grazing takes place in the remaining riparian areas adjacent to streams. Tallgrass prairie with big and little bluestem, switchgrass and Indian grass are the native species, however little intact tallgrass prairie remains. A representation of the current land use is shown in *Figure 4*.

Concentrated Animal Feeding Operations (CAFOs) are also found throughout the watershed. As of 2024, there are eight CAFOs within the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed. Livestock grazing pressure can result in the deterioration of riparian areas along channels and streambanks.

	NLCD 2006	NLCD 2017
Barren	12.63%	0.32%
Developed	8.29%	5.90%
Forest	0.95%	0.78%
Grassland	11.65%	17.51%
Нау	2.24%	5.48%
Row Crop	50.91%	63.36%
Small Grain	2.85%	1.82%
Water	2.27%	2.57%
Wetlands	8.21%	2.26%

Table 1 - Land Use in	Ria Sigur River	r Soomont 5 and 6 Acco	ording to National Land	Cover Dataset
Tuble I - Lunu Use in	Dig Sibus River	Segment 5 und 0 Acco	nung io muionui Lunu	Cover Duiusei

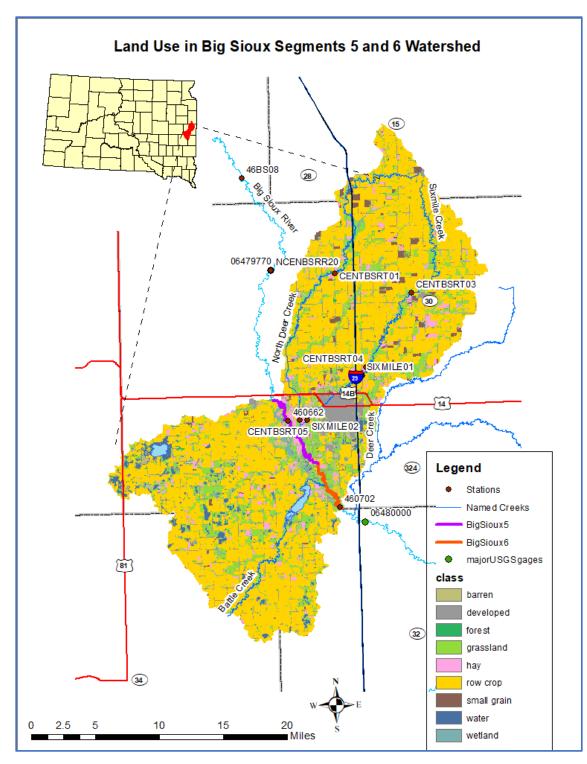


Figure 4 - Land Use Map in Big Sioux Segments 5 and 6 Watershed

3.0 South Dakota Water Quality Standards

Water quality standards are comprised of three main components as defined in the Federal Clean Water Act (33 U.S.C. §1251 et seq.) and Administrative Rules of South Dakota (ARSD) can be located here: <u>Chapter 74:51:01</u>

- <u>Beneficial Uses:</u> Functions or activities that reflect waterbody management goals
- <u>Criteria:</u> Numeric concentrations or narrative statements that represent the level of water quality required to support beneficial uses
- <u>Antidegradation</u>: Additional policies that protect high quality waters

3.1 Beneficial Uses

The waterbodies in South Dakota are assigned beneficial uses. A list of beneficial uses for South Dakota waters can be found here: <u>Administrative Rule 74:51 South Dakota Legislature</u>

- 1) Domestic water supply
- 2) Coldwater permanent fish life propagation
- 3) Coldwater marginal fish life propagation
- 4) Warmwater permanent fish propagation
- 5) Warmwater semipermanent fish life propagation
- 6) Warmwater marginal fish life propagation
- 7) Immersion recreation
- 8) Limited contact recreation
- 9) Fish and wildlife propagation, recreation, and stock watering
- 10) Irrigation
- 11) Commerce and industry

All waters (both lakes and streams) in South Dakota are designated the use of fish and wildlife propagation, recreation, and stock watering (9). All streams are designated the uses of (9) and (10) irrigation, unless stated otherwise in the Administration Rules of South Dakota (ARSD). A beneficial use attainability assessment is conducted on additional waterbodies if designated uses are not included in accordance with the Clean Water Act (CWA).

SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 have been assigned the following beneficial use designations (5) warmwater semipermanent fish life propagation, (8) limited contact recreation, (9) fish and wildlife propagation, recreation, and stock watering, and (10) irrigation waters.

The Big Sioux River Segment 07 identified as SD-BS-R-BIG_SIOUX_07 is the downstream water that receives flow from SD-BS-R-BIG_SIOUX_06 and has been assigned the beneficial uses of (1) domestic water supply (5) warmwater semipermanent fish life propagation, (8) limited contact recreation, (9) fish and wildlife propagation, recreation, and stock watering, and (10) irrigation. SD-BS-R-BIG_SIOUX_07 is impaired for TSS and mercury but there are EPA approved TMDLs for both pollutants.

3.2 Water Quality Criteria

The water quality standard criteria must be met to protect and support the beneficial uses designated for segments SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 (*Table 2*). When multiple uses establish criteria for the same parameter, the most stringent criterion is used for regulatory purposes.

Parameter	Criteria	Beneficial Use		
$A_{1} = 1$; $r = 1$	\leq 750 mg/L ⁽¹⁾			
Alkalinity (CaCO ₃)	\leq 1313 mg/L ⁽²⁾			
	\leq 2,500 mg/L ⁽¹⁾			
Total dissolved solids	\leq 4,375 mg/L ⁽²⁾			
	\leq 4,000 micromhos/cm ⁽¹⁾			
Conductivity at 25°C	\leq 7,000 micromhos/cm ⁽²⁾	Fish and wildlife propagation, recreation, and stock watering		
Nitrates as N	\leq 50 mg/L			
Initiates as in	\leq 88 mg/L			
pH	\geq 6.0 - \leq 9.5 units			
Total petroleum hydrocarbon	\leq 10 mg/L			
Oil and grease	$\leq 10 \text{ mg/L}$			
	\leq 2,500 micromhos/cm ⁽¹⁾			
Conductivity at 25°C	\leq 4,375 micromhos/cm ⁽²⁾	Irrigation		
Sodium adsorption ratio	≤ 10 ratio			
	Equal to or less than the result from Equation 3 in Appendix A ⁽¹⁾	Warmwater semipermanent fish lif propagation waters		
Total ammonia nitrogen as N	Equal to or less than the result from Equation 2 in Appendix A ⁽²⁾			
Dissolved Oxygen ⁽³⁾	\geq 5.0 mg/L			
Undissociated hydrogen sulfide ⁽²⁾	\leq 0.002 mg/L	propagation waters		
pH (standard units)	\geq 6.5 - \leq 9.0 units			
	\leq 90 mg/L ⁽¹⁾			
Total Suspended Solids	\leq 158 mg/L ⁽²⁾	1		
Temperature	\leq 90 °F			
Dissolved Oxygen ⁽³⁾	≥ 5.0 ⁽²⁾			
Escherichia coli	\leq 630 cfu/100 mL ⁽⁴⁾	1		
(May 1 – September 30)	$\leq 1178 \text{ cfu}/100 \text{ mL}^{(2)}$	Limited Contact Recreation		
Microcystin	8 μg/L	1		
Cylindrospermopsin	15 µg/L ⁽⁵⁾]		

Table 2 . South	n Dakota W	Vater Quality	Criteria for	Rig Sigur	Segments 5 and 6
1 ubie 2 - Soun	i Dukotu m	aier Quainy	Crueria jor	Dig Sidux	Segments 5 unu 0

 30-day average as defined in ARSD 74:51:01:01(60); (2) daily maximum; (3) DO as measured anywhere in the water column of a non-stratified waterbody, or in the epilimnion of a stratified waterbody; (4) Geometric mean as defined in ARSD 74:51:01:01(24) and 74:51:01:50-51; (5) Not to be exceeded in more than three 10 day assessment periods over the course of the recreation season.

3.3 Total Suspended Solids Water Quality Criteria

South Dakota has adopted numeric TSS criteria for the protection of the (2) coldwater permanent fish life propagation, (3) coldwater marginal fish life propagation, (4) warmwater permanent fish life propagation, (5) warmwater semipermanent fish life propagation, (6) and warmwater marginal fish life propagation uses. Waters designated fish life propagation uses are to be maintained suitable for the propagation of fish life in order to protect aquatic life and the productivity of fisheries.

The South Dakota TSS criteria for the warmwater semipermanent fish life propagation beneficial use requires that 1) no single sample exceed 158 mg/L and 2) during a 30-day period, the mean of a minimum of 3 samples collected during separate weeks must not exceed 90 mg/L (<u>ARSD</u> <u>74:51:01:48</u>). The numeric TSS criteria applicable to SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 are associated with the warmwater semipermanent fish life propagation values listed in *Table 2*.

TMDLs must be protective of downstream uses and associated water quality criteria. SD-BS-R-BIG_SIOUX_06 flows into the Big Sioux River Segment 7 (SD-BS-R-BIG_SIOUX_07), which has the same beneficial uses as SD-BS-R-BIG_SIOUX_06, except for an additional (1) domestic water supply beneficial use. SD DANR's approved IR indicates on pg. 12 that TSS criteria is not associated with the (1) domestic water supply beneficial use. Therefore, it is not necessary for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 to adopt SD-BS-R-BIG_SIOUX_07's additional beneficial use criteria and the TMDL will still be protective of downstream water quality standards.

3.4 Numeric TMDL Targets

TMDLs are required to identify a numeric target to measure whether the applicable water quality standard is attained. A maximum allowable load, or TMDL, is ultimately calculated by multiplying this target with a flow value and a unit conversion factor. Generally, the pollutant causing the impairment and the parameter expressed as a numeric water quality criterion are the same. In these cases, selecting a TMDL target is as simple as applying the numeric criteria. Occasionally, an impairment is caused by narrative water quality criteria violations or by parameters that cannot be easily expressed as a load. When this occurs, the narrative criteria must be translated into a numeric TMDL target (e.g., nuisance aquatic life translated into a total phosphorus target) or a surrogate target established (e.g., a pH cause addressed through a total nitrogen target) and a demonstration should show how the chosen target is protective of water quality standards.

As seen from *Table 2* there is only one numeric TSS criteria for TMDL target consideration. When multiple numeric criteria exist for a single parameter, the most stringent criterion is selected as the TMDL target, if applicable. The numeric TMDL target for TSS for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 is 90 mg/L, which is based on the 30-day mean threshold for TSS. This criterion is more stringent than the single sample maximum for TSS of 158 mg/L.

4.0 Antidegradation

This TMDL document is consistent with South Dakota antidegradation policies (ARSD 74:51:01:34) because it provides recommendations and establishes pollutant limits at water quality levels necessary to meet criteria and fully support existing beneficial uses.

5.0 Assessment Methods

Assessment methods document the decision-making process used to define whether water quality standards are met. SD DANR evaluates monitoring data following these established procedures to determine if: 1) one or more beneficial use is not supported, 2) the waterbody is impaired, and 3) it should be placed on the next 303(d) list. Waterbodies impaired by pollutants require TMDLs and these assessment methods are commonly used again in the process sometime after TMDLs have been established and restoration efforts have been implemented. In select cases, attainment is judged instead by comparing current conditions to TMDL loading limits. For example, when certain characteristics of the pollutant (e.g., bioaccumulative) or waterbody (e.g., a reservoir filling with sediment) prioritize loading concerns. The table below presents South Dakota's assessment method and describes what constitutes a minimum sample size and how an impairment decision is made (*Table 3*).

	Integrated Report Assessment Methods							
Description	Minimum Sample Size	Impairment Determination Approach						
FOR CONVENTIONAL PARAMETERS: • TSS • <i>E. coli</i> • pH • Temperature • Dissolved Oxygen	STREAMS: Minimum of 20 samples (collected on separate days) for any one parameter are required within a waterbody reach. Minimum of 10 chronic (calculated) results are required for chronic criteria (30-day averages and geomeans). LAKES: Reference the lake listing methodology starting on page 19 of the 2024 IR.	STREAMS: >10% exceedance for daily maximum criteria (acute or >10% exceedance for 30-day average criteria OR when overwhelming evidence suggests nonsupport/support). LAKES: Reference the lake listing methodology staring on page 19 of the 2024 IR.						

Table 3 - Assessment Methodology

The assessment method mentions chronic and acute criteria. Although these terms do not directly relate to TSS criteria for reasons previously discussed, the assessment method is organized together with other conventional parameters in the IR to show that a consistent approach is applied to many pollutants. In this limited definition, chronic refers to the 30-day geometric mean (GM) and acute refers to the single sample maximum (SSM) TSS criteria. Different assessment methods have been established for toxic parameters and mercury in fish tissue.

6.0 Source Assessment and Allocations

6.1 Point Sources

Point sources are the direct discharges of pollutants into bodies of water. Surface water discharges, stormwater and any permitted Concentrated Animal Feeding Operation (CAFO) that discharge directly to a waterbody would be considered point sources. There are several documented point sources within the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watersheds. These sources include nine National Pollutant Discharge Elimination System (NPDES) permitted facilities and one Municipal Separate Storm Sewer System (MS4) facility that may directly contribute sediment to the impaired segments of the Big Sioux River. These potential sources of TSS are documented here to provide a watershed scale account of the entity's operational characteristics (discharge permits etc.), potential impact, and Waste Load Allocation (WLA) consideration for the impaired segments of the Big Sioux River.

The permitted NPDES facilities within the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watersheds are represented below (*Table 4*).

Facility	Permit number	HUC Location	HUC number	Discharges to	BS5/6	WLA (ton/day)
City of Volga WWTF	SD0021920	Lake Sinai	101702021108	unnamed trib to BS	5	0.06
City of Volga WTP	SDG860029	Lake Sinai	101702021108	unnamed trib to BS	5	0
Soybean Processers	SDP000090	Lake Sinai	101702021108	Volga POTW	5	0
Prairie Aquatech Manufacturing	SDP000133	Lake Sinai	101702021108	Volga POTW	5	0
City of White	SD0021636	Upper Six Mile Creek	101702020601	unnamed trib to Six Mile	5	0
Dakotah Bank	SD0028568	Lower Six Mile Creek	101702020602	MS4 to SixMile	5	0
SDSU	SD0026832	Lower Six Mile Creek	101702020602	unnamed trib to Six Mile	5	0
City of Brookings WWTP	SD0023388	Medary creek-Big Sioux	101702021110	BS6	6	0.88
Town of Sinai	SDG820974	Molumby Slough	101702020806	No discharge	6	0
City of Brookings MS4	SDR41A003	Lower Six Mile Creek	101702020602	MS4 to Six Mile	5 and 6	MS4

Table 4 - NPDES Facilities in the Big Sioux River Segment 5 and 6

6.1.1 Construction Stormwater Permits

Construction activities have the potential to produce pollutants that may contaminate stormwater runoff. Currently there are several non-major construction permits that are ongoing in the watershed. The status of these construction projects is currently unknown, however they are considered to be active by SD DANR until the permitted party opts to close the permit. All the permits authorize discharge of stormwater, but do not authorize discharge if the discharge will cause or have the reasonable potential to cause or contribute to violations of surface water quality. Stormwater construction activities must have coverage and comply with South Dakota's *General Permit Authorizing Stormwater Discharges Associated with Construction Activities*¹ ensuring that discharges are minimal. The TMDL assumes their TSS contribution will be minimal, and unless found otherwise, no additional permit conditions are required by this TMDL. Future permits will remain under the same assumption, unless otherwise established. Construction stormwater permittees can be found in *Appendix B*. A WLA of zero was assigned to each construction stormwater permittee in the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 TMDL.

 $^{^{1}\} https://danr.sd.gov/OfficeOfWater/SurfaceWaterQuality/docs/DANR_ConstructionGeneralPermit2023.pdf$

6.1.2 Wastewater Treatment Facilities <u>City of Volga WWTF (NPDES Permit #SD0021920)</u>

The City of Volga operates a wastewater treatment facility in Brookings County, South Dakota (Latitude 44.320278°, Longitude -96.893972°). Primary treatment includes two concrete aeration basins, a 21-acre pond system and a 15-acre constructed wetland. The outflow from the WWTF is discharged to an unnamed tributary of the Big Sioux River. Wastewater travels approximately 1/8 mile until the tributary's confluence with the Big Sioux River. Discharge is continuous and controlled with an adjustable slide gate followed by a 6" Parshall flume. The facility's average design flow is 0.887 million gallons per day (MGD), with a peak design flow of 1.183 MGD. Upgrades to the facility in 2018 include converting the discharge to continuous.

The city collects wastewater from Soybean Processors (SDP000090) and Prairie Aquatech Manufacturing (SDP000133) which are both permitted under SD DANR's Industrial Pretreatment Program.

The WLA for this facility was calculated by using the facility's daily max TSS limit (45 mg/L) and multiplying it by the 80th percentile daily max flow, 0.310 MGD, and then by a conversion factor (4.172 x 10^{-3}). This facility was assigned a WLA of 0.06 tons/day for the SD-BS-R-BIG_SIOUX_05 TMDL.

City of White WWTF (NPDES Permit #SD0021636)

The City of White is about 11 miles northeast of Brookings in the upper part of the watershed. The City's wastewater treatment facility is located one mile southwest of White, SD. Wastewater is discharged to an unnamed tributary about 1.5 miles upstream from the confluence of Six Mile Creek. The facility is a gravity flow collection system with a three-cell stabilization pond. This system serves 537 people (2020) and has a peak flow design of 27,900 GPD. Discharge from the facility occurs intermittently generally for a week or two in the spring and fall. TSS is not permitted to exceed 30 mg/L for the 30-day average or 45 mg/L within 7 days. The facility used to discharge annually, now it is more like monthly since late 2014. Due to the distance from the discharge to Six Mile, the City of White was assigned a WLA of zero for the SD-BS-R-BIG_SIOUX_05 TMDL.

Town of Sinai WWTF (NPDES Permit #SDG820974)

The Town of Sinai, located more than 10 miles west of the Big Sioux River, has a minor wastewater treatment facility with no discharge permitted. During the current permit cycle (12/1/2018 - present), the facility reported two emergency discharges. Emergency discharges are a discharge from the treatment or containment system through a release structure or over/through retention dikes or walls. An emergency discharge is an enforceable violation of the permit unless it is an allowable bypass that does not cause effluent limitations to be exceeded, an anticipated bypass approved by the Secretary, or an unanticipated bypass allowed under the permit (Section 3.1 – Prohibition of Bypass, Emergency Discharges, and SSOs). If the facility were to discharge under emergency conditions, the wastewater would travel 450 feet to an unnamed wetland. In addition, daily TSS monitoring is required during overflows and emergency discharges.

Considering the distance from the TMDL waterbodies and the infrequent discharges, the WLA for this facility is therefore zero.

6.1.3 Non-Wastewater Treatment Facilities

City of Volga WTP (NPDES Permit #SDG860029)

The City of Volga's drinking water treatment plant and distribution facility operates five ground water wells and a water tower. This water is discharged through the storm sewer to an unnamed tributary 4 miles away from the Big Sioux. The drinking water treatment and distribution facilities are not sources of TSS to the TMDL waterbodies. Although no discharge has ever been reported, the facility has BMPs in place to settle out TSS from raw water permitted to discharge from outfall DW1. The DW2 outfall discharges only fully treated drinking water with very low TSS. Because of the distance from the Big Sioux River and the low TSS concentrations, the City of Volga's WLA is denoted as zero for the SD-BS-R-BIG_SIOUX_05 TMDL.

Dacotah Bank (NPDES Permit #SD0028568)

Dacotah Bank operates a sump discharge located at 1441 6th Street in the Southwest ¹/₄ of Section 24, Township 110 North, Range 50 West, in Brookings County, South Dakota (Latitude 44.311389°, Longitude -96.781667°, Navigational Quality GPS). Any discharge from this facility will enter the Brookings municipal storm sewer system (MS4) which is assigned a WLA in this TMDL. As a result, Dacotah Bank was assigned a WLA of zero for the SD-BS-R-BIG_SIOUX_05 TMDL.

SDSU Swimming Pool (NPDES Permit #SD0026832)

SDSU's wastewater discharge permit for the campus swimming pool does not allow discharge of TSS. As a result, SDSU Swimming Pool was assigned a WLA of zero for the SD-BS-R-BIG_SIOUX_05 TMDL.

SD Soybean Processors (NPDES Permit #SDP000090)

SD Soybean Processors operate a soybean processing plant that continuously discharges to the City of Volga's WWTF and so are included as a part of the City of Volga's WLA. The average discharge is 128,000 gal/day. TSS is limited to 100 lbs/day and flow rate is limited to .20 MGD for a 30-day average. SD Soybean Processors submits Discharge Monitoring Reports (DMRs) as required under their current permit. SD Soybean Processor's WLA is denoted as zero for the SD-BS-R-BIG_SIOUX_05 TMDL.

Prairie Aquatech (NPDES Permit #SDP000133)

Prairie Aquatech Manufacturing LLC operates an animal health and nutrition facility in the city of Volga. It produces dry protein and liquid molasses from soybean meal. This facility continuously discharges to the City of Volga's WWTF where the wastewater is treated and discharged to the Big Sioux River via an unnamed tributary. Its effluent limits include 40 lbs/day for TSS 30-day average. The flow rate is limited to .11 MGD. Prairie Aquatech's WLA is denoted as zero for the SD-BS-R-BIG_SIOUX_05 TMDL.

City of Brookings Municipal Utilities WWTP (NPDES Permit #SD0023388)

The City of Brookings operates a wastewater treatment plant two miles south of the city, serving 23,377 people (2020). Various industries that discharge to the WWTP include 3M, Star Circuits, Hub City, Excel Storage and Twin City Fan. Industrial discharges make up about 3% of the total facility flow. The facility was built in 1980, with the most recent upgrade occurring in 2016. The facility has a peak flow design of 15 MGD. Pretreatment, primary clarification, bio-filtration, aeration, final clarification, tertiary filtration, disinfection, sludge digestion and land application on sludge are all part of the treatment process.

TSS is limited to a 30-day average of 30 mg/L, 7-day average of 45 mg/L. The WWTP discharges regularly, with monthly discharges in 2019. The WLA for this facility was calculated by using the facility's 7- day average TSS limit (45 mg/L) and multiplying it by a conversion factor and the 80th percentile of the daily maximum flow (4.69 MGD). This facility was assigned a WLA of .88 tons/per day in the SD-BS-R-BIG_SIOUX_06 TMDL.

6.1.2 City of Brookings MS4 (NPDES Permit #SDR41A003)

The City of Brookings has a population in excess of 10,000 and, therefore, is subject to Phase II of the MS4 Program. Phase II MS4s are covered by a general permit. Each regulated MS4 is required to develop and implement a stormwater management program (SWMP) to reduce contamination from stormwater runoff and prohibit illicit discharges. A storm water management model (SWMM) was completed by Banner and Associates in 2004 as part of the Brookings Master Plan (2015). The expanded Phase II program required small MS4s in urbanized areas to obtain NPDES permits and implement minimum control measures.

In order to quantify the current total suspended load from the City of Brookings MS4, the jurisdictional area approach² was used:

$$(TMDL - WLA - MOS) * Area_{MS4} = MS4 Load$$

The Brookings MS4 area encompasses roughly 8,500 acres. The MS4 covers approximately 2.92% of the SD-BS-R-BIG_SIOUX_05 watershed area and 3.14% of the SD-BS-R-BIG_SIOUX_06 watershed. The calculated MS4 load was estimated at the five flow zones for the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed. As seen in *Table 5*, the average calculated MS4 load for SD-BS-R-BIG_SIOUX_05 varies from 1.26E-01 tons/day in the low flow zone to 3.03E+01 ton/day in the high flow zone. As seen in *Table 6*, the average calculated MS4 load for SD-BS-R-BIG_SIOUX_06 varies from 1.33E-01 ton/day in the low flow zone to 3.80E+01 ton/day in the high flow zone.

SD-BS-R-BIG_SIOUX_05 - Flow Zone	TMDL Load at Standard (Ton/day)	WLA	MOS	MS4 (Area)	MS4 Load
High Flows	1.15E+03	6.00E-02	1.15E+02	0.029155765	3.03E+01
Moist Conditions	2.41E+02	6.00E-02	2.41E+01	0.029155765	6.33E+00
Mid-Range Conditions	4.87E+01	6.00E-02	4.87E+00	0.029155765	1.28E+00
Dry Conditions	2.34E+01	6.00E-02	2.34E+00	0.029155765	6.11E-01
Low Flows	4.87E+00	6.00E-02	4.87E-01	0.029155765	1.26E-01

² Total Maximum Daily Loads with Stormwater Sources: A Summary of 17 TMDLs

SD-BS-R-BIG_SIOUX_06- Flow Zone	TMDL Load at Standard (Ton/day)	WLA	MOS	MS4 (Area)	MS4 Load
High Flows	1.35E+03	8.80E-01	1.35E+02	0.031381812	3.80E+01
Moist Conditions	2.81E+02	8.80E-01	2.81E+01	0.031381812	7.92E+00
Mid-Range Conditions	5.67E+01	8.80E-01	5.67E+00	0.031381812	1.57E+00
Dry Conditions	2.72E+01	8.80E-01	2.72E+00	0.031381812	7.41E-01
Low Flows	5.67E+00	8.80E-01	5.67E-01	0.031381812	1.33E-01

Table 5 - MS4 Calculated Loadings for SD-BS-R-BIG_SIOUX_05

Table 6 - MS4 Calculated Loadings for SD-BS-R-BIG_SIOUX_06

The Simple Method was used to quantify the estimated load reductions needed for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 MS4 loadings (Scheuler, 1987). The Simple Method calculation procedure is documented in *Appendix C*. Storm water samples collected at 10 stations (BROOKSW01- BROOKSW10) from 2012 and 2013 were used to estimate MS4 load reductions. Sediment loads were estimated so that the urban stormwater source could be compared to other nonpoint source pollution sources. Stormwater runoff from the City of Brookings is transported through the MS4 and discharged into either Six Mile Creek (tributary of SD-BS-R-BIG_SIOUX_05) or continues south to enter the mainstem of SD-BS-R-BIG_SIOUX_06. The estimated reduction of the MS4 area for each segment is based on an average annual rainfall and the concentrations collected from each of the sampling stations that correspond to each segment.

Stormwater sampling stations are represented in *Figure 5*. A statistical analysis of TSS concentrations from stations that drain to SD-BS-R-BIG_SIOUX_05 are portrayed in *Figure 6*, while stations that drain toward SD-BS-R-BIG_SIOUX_06 are portrayed in *Figure 7*.

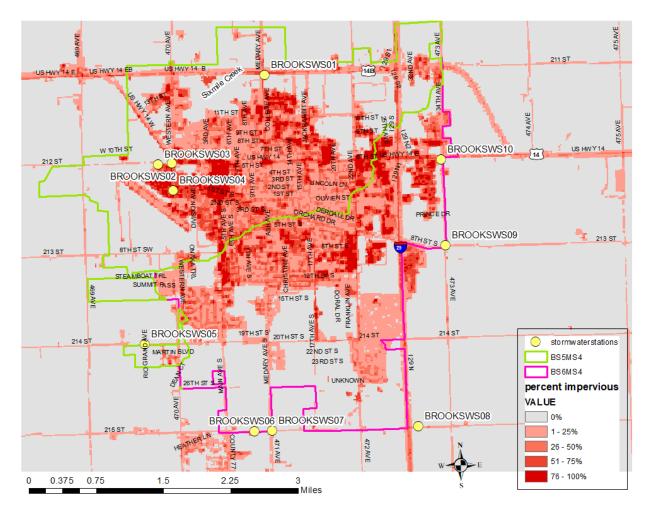


Figure 5 - Impervious Surfaces and Brookings Stormwater Stations

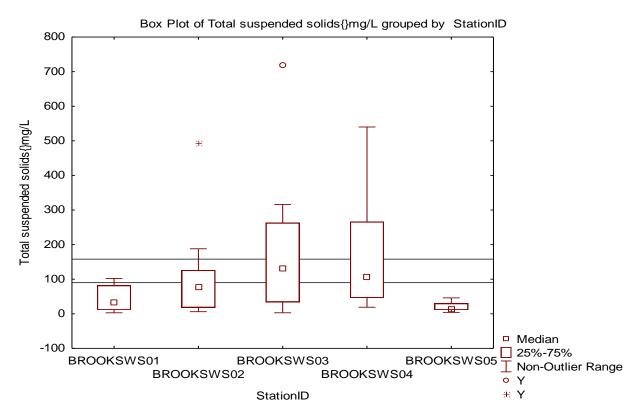


Figure 6 - Stormwater Stations that drain to SD-BS-R-BIG_SIOUX_05

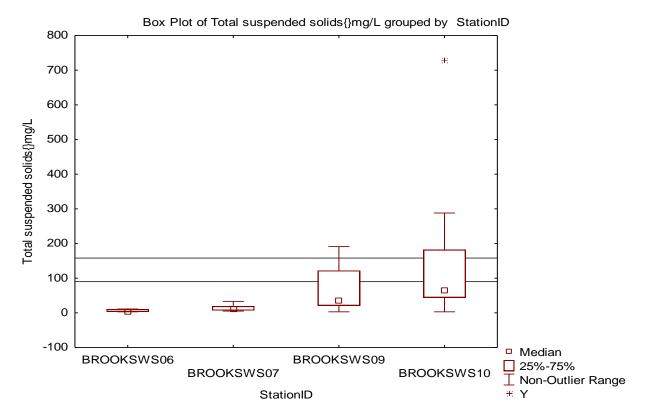


Figure 7 - Stormwater Stations the drain to SD-BS-R-BIG_SIOUX_06

Stormwater samples did produce moderate exceedance rates of the TSS standard for warmwater semipermanent fish life (> 158 mg/L SSM or > 90 mg/L 30-day average). Of the five urban stormwater stations that drain to SD-BS-R-BIG_SIOUX_05, there had been a total of 49 samples collected. Of the 49 samples, 12 exceeded the SSM and 18 exceeded the chronic 30-day mean standard. The remaining five stormwater stations that drain to SD-BS-R-BIG_SIOUX_06 had a total of 33 samples collected. Of the 33 samples, 5 exceeded the SSM and 7 exceeded the chronic standard. The MS4 component of the TSS load will be included in the TMDL's waste load calculations.

6.1.3 CAFOs in the Watershed

There are eight permitted Concentrated Animal Feeding Operations (CAFOs) within the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed. Each of the CAFO's facility name, type of operation, and permit number can be found in *Table 6*. All CAFOs are required to maintain compliance with provisions of the SD Water Pollution Control Act (SDCL 34A-2). SDCL 34A-2-36.2 requires each concentrated animal feeding operation, as defined by Title 40 Codified Federal Regulations Part 122.23 dated January 1, 2007, to operate under a general or individual water pollution control permit issued pursuant to 34A-2-36. The general permit ensures that all CAFOs in SD have permit coverage regardless of if they meet conditions for coverage under a NPDES permit.

All facilities with a general permit number that starts with SDG-01* are covered under the 2003 General Water Pollution Control Permit for Concentrated Animal Feeding Operations. These permits require housed lots to have no discharge of solid or liquid manure to waters of the state, and allows open lots to only have a discharge of manure or process wastewaters from properly designed, constructed, operated and maintained manure management systems in the event of 25-years, 24-hour or 100-year, 24-hour storm event if they meet the permit conditions. The general permit was reissued and became effective on April 15, 2017. All CAFOs with coverage under the 2003 general permit have a deadline to apply for coverage under the 2017 general permit.

All facilities with a general permit number that starts with SDG-1* are covered under the 2017 General Water Pollution Control Permit for Concentrated Animal Feeding Operations. The 2017 general permit allows no discharge of manure or process wastewater from operations with state permit coverage or NPDES permit coverage for new source swine, poultry, and veal operations, and other housed lots with covered manure containment systems. Operations also have the option to apply for a state issued NPDES permit. Operations covered by the 2017 general permit or NPDES permit for open or housed lots with uncovered manure containment systems can only discharge manure or process wastewater from properly designed, constructed, operated and maintained manure management systems in the event of 25-year, 24-hour storm event if they meet the permit conditions.

North Deer Creek	HUC10-1017020207	
Name of Facility	Type of Operation	SD General Permit #
Hammink Dairy, LLC	dairy cattle (housed lot)	SDG-100065
Providence Dairy, L.L.C.	dairy cattle (housed lot)	SDG-100209
Red Willow Hutterian Brethren, Inc.	farrow to finish swine (housed lot)	SDG-109129
Portion of Battle Creek	HUC10-1017020208	
Name of Facility	Type of Operation	SD General Permit #
Camridge Hutterian Brethren, Inc.	beef cattle (open lot)	SDG-100526
Clint Overskei Swine Finisher	finisher swine (housed lot)	SDG-100442
Old Tree Farms, LLC	dairy cattle (housed lot)	SDG-100006
Southern Portion of Upper Big Sioux	HUC10-1017020211	
Name of Facility	Type of Operation	SD General Permit #
Kevin Triebwasser Swine Finisher	finisher swine (housed lot)	SDG-100358
Linde Dairy, LLC	dairy cattle (housed lot)	SDG-100054
Six Mile	HUC10-1017020206	
No permitted CAFOs		

Table 7 - CAFOs in the Big Sioux Watershed

For more information about South Dakota's CAFO requirements and general permits visit: <u>DANR Concentrated Animal Feeding Operations</u>.³ As long as these facilities comply with the general CAFO permit requirements ensuring their discharges are unlikely and indirect loading events, the TMDL assumes their TSS contribution is minimal, and unless found otherwise, no additional permit conditions are required by this TMDL.

6.2 Natural and Nonpoint Sources of Sedimentation

Sediment production and transport is a natural occurrence within watersheds. Natural sources of TSS in the watershed exist outside of human-caused influences. There are several potential natural sources of sediment in the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed. Natural sediment sources in the watershed include overland runoff and in-stream bed and bank erosion. Natural sources are not assigned a separate allocation in the TMDL but rather the allowable natural loading is combined with human-caused nonpoint sources and represented in the load allocation (LA). Because natural loading generally cannot be reduced through the implementation of Best Management Practices (BMPs), any reductions assigned to the LA are expected to be realized through restoration activities associated with human-caused nonpoint sources.

Human activities can accelerate the natural erosional processes in a watershed, exacerbating sediment contributions to waterways. Anthropogenic activities such as civil construction of bridges, roads, culverts, and the installation of drain tile from agricultural activities has increased the erosive force on riverbanks and beds. Land use changes over the years have led to the removal of riparian vegetation which increases sediment loading within the watershed.

6.2.1 Sediment Load Estimates

It was estimated that between 10 - 25% of the sediment in the Big Sioux River originated from bed and bank erosion, with 15% of the sediment load in an average year (Bankhead and Simon,

³ https://danr.sd.gov/Agriculture/Livestock/FeedlotPermit/docs/2017GeneralPermit.pdf

2009). According to Klimetz, Simon, and Schwartz (2009), the region under assessment has a moderately unstable stream category (threshold of .8-7.9 T/y/km²). The sediment yield at the USGS gage 06480000 was reported at 2.8 T/y/km². A sediment budget for each segment was created using 2.8 T/yr/km² as the annual average total for the sediment yield. The combined watershed area is 287,104 acres. A budget based on the bed and bank percentage of 15% (Bankhead and Simon, 2009), the HIT model (tons/acre/yr), and the number of 15m² pixels were used to derive the percent sediment contribution to sediment load from NLCD classes (*Table 8*). A discussion of the HIT model can be found in *Appendix D*.

								percent sediment
								contribution to
Load allocation								sediment load
Bed and Bank		15%	487.95	T/yr				15%
Uplands		85%	2765	T/yr				
		upland sediment			HIT-count-	HIT to	HIT-sum	
		percentage			15m ² pixels	acres	tons/acre/year	
	row crop	86%	2388.96	T/yr	817690	3030.839	5406.516087	73.44%
	small grain	0%	1.80	T/yr	23493	87.07884	142.127962	0.06%
	hay	1%	14.48	T/yr	70736	262.1891	378.872933	0.45%
	grassland	10%	263.73	T/yr	225543	835.9947	2163.810247	8.11%
	barren	0%	0.02	T/yr	3867	14.33337	8.533546	0.00%
	water	0%	0.11	T/yr	20698	76.71893	9.925652	0.00%
	developed	3%	94.53	T/yr	75816	281.0186	2307.299091	2.91%
	forest	0%	0.25	T/yr	10012	37.11035	46.367145	0.01%
	wetland	0%	1.12	T/yr	28783	106.6867	71.828357	0.03%

Table 8 - Load Allocation by Land Use

7.0 Data Collection

7.1 Water Quality Data and Discharge Information

Daily flow values and paired TSS concentrations are essential elements of TMDL development. TSS data was obtained from six monitoring stations at two different locations within the impaired segments over the assessment period between 2000 - 2023.

7.2 TSS Water Quality Data

All applicable TSS data collected within the impaired segments during the assessment years 2000 - 2023 were used for TMDL development. TSS data was obtained from multiple monitoring sites, many of which were established during past watershed assessment projects. All data collection conducted during projects followed methods in accordance with the South Dakota <u>Standard Operating Procedures for Field Samplers</u> developed by the Watershed Protection Program of SD DANR. Water samples were sent to the State Health Laboratory in Pierre, SD for analysis. All water quality data and corresponding daily flow data used for TMDL development can be found in *Appendix A*.

TSS data was collected over a series of projects with many stations used in more than one project. The Central Big Sioux Watershed Assessment Project (CENTBSR1) ran from 1999 to 2000 and included stations CENTBSRR01 and CENTBSRR03. Next, when implementation in the basin really took off, the Central Big Sioux Implementation Project (CENTBSR2) ran from 2006 to

2009. East Dakota Water Development District continued monitoring throughout the basin using many of the same sites that are still active today. That project is abbreviated EDWQSPZ1 and includes stations CENTBSRR01, CENTBSRR03, NCENBSRR19, and NCENBSRR20. The Brookings storm water project ran in 2012 and 2013 and included site BIGSIOUX01. Monitoring station 460662 in SD-BS-R-BIG_SIOUX_05 and 460702 in SD-BS-R-BIG_SIOUX_06 are long-term water monitoring sites established as part of SD DANR's ambient water quality monitoring network. These monitoring stations will also provide a long-term dataset to evaluate compliance. Data by station are summarized below in *Table 9*. All the sites for SD-BS-R-BIG_SIOUX_05 are co-located: 460662, CENTBSRR01, and NCENBSRR01. All the sites for SD-BS-R-BIG_SIOUX_05 are SIOUX_06 are co-located: 460702, CENTBSRR03, and BIGSIOUX01.

Big Sioux Segment	Station ID	Number of Grab Samples
SD-BS-R-BIG_SIOUX_05	460662	273
SD-BS-R-BIG_SIOUX_05	CENTBSRR01	129
SD-BS-R-BIG_SIOUX_05	NCENBSRR01	17
SD-BS-R-BIG_SIOUX_06	460702	276
SD-BS-R-BIG_SIOUX_06	BIGSIOUX01	51
SD-BS-R-BIG_SIOUX_06	CENTBSRR03	96

Table 9 - Water Quality Data

After a preliminary look over the data, 419 TSS samples were available for analysis within SD-BS-R-BIG_SIOUX_05 and 423 samples within SD-BS-R-BIG_SIOUX_06. When multiple stations within the same segment were sampled on the same day, the highest concentration TSS sample was used to calculate the load. Each station had multiple samples above the SSM water quality standard (158 mg/L). Chronic exceedances must have three samples in a 30-day period that were collected on separate weeks. Twenty chronic exceedances for TSS occurred in SD-BS-R-BIG_SIOUX_06.

7.3 Flow Information and Data

Long term hydrologic records were available via the USGS gage station located downstream of SD-BS-R-BIG_SIOUX_06. The USGS gage station identified as 06480000 is located approximately 10 miles south of Brookings, SD and 2 miles south of the Brookings-Moody County line where SD-BS-R-BIG_SIOUX_06 ends. Flow data acquired at this site began in 1953 and is currently active as of 2024. Flow data from the period of assessment (2000 – 2023) was used to develop the load duration curve (LDC) and the TMDL for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06.

As SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 do not have stream gages located at the end of their respective segments, StreamStats was used to estimate the drainage area of both segments. Utilizing the USGS StreamStats Tool, the contributing drainage area into USGS gage 06480000 is approximately 2419 square miles (1,548,160 acres). This watershed area value is significantly greater than the watershed area of SD-BS-R-BIG_SIOUX_05 (156,710 acres) and SD-BS-R-BIG_SIOUX_06 (130,394 acres) because the entire watered area upstream of 06480000 is required for the analysis rather than the watershed area for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 alone. StreamStats estimated the approximate drainage area for SD-BS-R-

BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 as 1940.09 square miles and 2261.47 square miles, respectively. Flows at the TMDL segments were then estimated using the drainage area ratio method (Williams-Sether, 1992).

7.4 Rapid Geomorphic Assessment

Rapid geomorphic assessments (RGAs) help identify unstable portions of the channel. RGAs were conducted on the Big Sioux River in 2007 and assessed in accordance with the *Standard Operating Procedures for Field Samplers* developed by the Watershed Protection Program of SD DANR. RGAs are an assessment to determine the stability of stream bed and banks and considers stream bed composition, bank vegetation, existence of failing stream banks, presence of erosional and depositional areas, widening and downcutting processes, and stages of channel evolution.

The RGA are given a score between 0 and 30. Higher RGA scores indicate more unstable banks which contribute more sediment to the river. A score of 10 and under are associated with streams of stable ranking. Scores between 10 and 20 are associated with streams that have some degree of instability (Klimetz, Simon, & Schwartz, 2009). After the first station on SD-BS-R-BIG_SIOUX_05, the channel is in poor condition. The RGA indicates a problem on this stretch of river with a note on hoof action and overgrazing in the area. Then, after North Deer Creek enters the Big Sioux River, channel conditions dramatically improve. By the end of SD-BS-R-BIG_SIOUX_06, the channel is back in the condition it was at the beginning of SD-BS-R-BIG_SIOUX_05 (*Figure 8*).

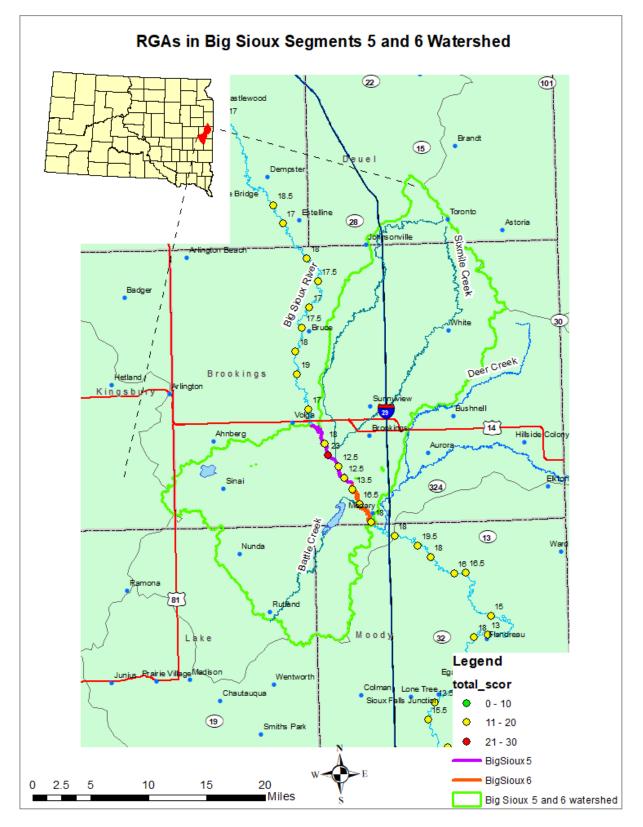


Figure 8 - RGAs in Big Sioux Segment 5 and 6 Watershed

8.0 TMDL Allocations

Contributing factors of pollution are split between point and nonpoint sources. Wasteload allocations (WLAs) are the allocated loads for point sources including all sources subject to regulation under the NPDES program. Therefore, load allocations are the sum of nonpoint sources as well as natural background sources. The TMDL (or loading capacity) is the sum of WLAs, LAs, and a margin of safety (MOS).

A TMDL is expressed by the equation: $TMDL = \Sigma WLA + \Sigma LA + MOS$, where:

 Σ WLA is the sum of the wasteload allocation(s) (point sources) Σ LA is the sum of the load allocation(s) (nonpoint sources) MOS = margin of safety

8.1 Margin of Safety (MOS)

In accordance with regulations, a margin of safety was established to account for uncertainty in the data analyses. A margin of safety may be provided (1) by using conservative assumptions in the calculation of the loading capacity of the waterbody and (2) by establishing allocations that in total are lower than the defined loading capacity. In the case of SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06, the latter approach was used to establish a safety margin on the TSS TMDLs.

A 10% explicit MOS was calculated within the duration curve framework to account for uncertainty (e.g., loads from tributary streams, effectiveness of controls, etc.). This 10% explicit MOS was calculated from the TMDL within each flow zone. The remaining assimilative capacity was attributed to nonpoint sources (LA) or point sources (WLA).

8.2 Wasteload Allocations (WLA)

All NPDES permitted facilities within the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed were identified and reviewed for WLA consideration in **Section 6.1**. Of the nine entities with NPDES permits, three were given a WLA in this TMDL. Segment SD-BS-R-BIG_SIOUX_05 has only one point source discharger identified as the City of Volga's WWTF (#SD0021920) and was assigned a WLA of 0.06 ton/day across all flow zones.

Segment SD-BS-R-BIG_SIOUX_06 has one point source discharger identified as the City of Brookings WWTF (#SD0023388) and was assigned a WLA of 0.88 ton/day across all flow zones.

Both SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 were given a WLA for the City of Brookings MS4 (#SDR41A003). To calculate the WLA assigned to the City of Brookings MS4, the jurisdictional area approach was used. The MS4 covers approximately 2.92% of the SD-BS-R-BIG_SIOUX_05 watershed area and 3.14% of the area that drains to the SD-BS-R-BIG_SIOUX_06 watershed.

There are eight permitted CAFOs in the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 watershed. CAFOs were not assigned a WLA in the TMDL given they are not

permitted to discharge their waste in accordance with provisions of their NPDES permits. The WLA was set at zero in all five flow zones for both segments of the Big Sioux River.

8.3 Load Allocations (LA)

EPA regulations require that a TMDL include LAs, which identify the loading capacity from nonpoint sources and sources of natural background. The LA was calculated by subtracting the 10% explicit MOS and WLA from the TMDL load at the standard for each flow zone (seen in the equation below).

LA = TMDL (-) MOS (-) WLA

9.0 Total Suspended Solids TMDL Loading Analysis

The TMDL for each segment was developed using the Load Duration Curve (LDC) framework. A LDC model is a representation of the allowable loading capacity of a pollutant based on the relevant water quality criterion. The LDC considers the impaired segments entire flow regime, determining the total maximum daily load at any given flow variable. In both analyses, SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 were separated into five flow zones (*Figure 9 and Figure 10*); high flows (0 – 10 percent), moist conditions (10 – 40 percent), mid-range conditions (40 – 60 percent), dry conditions (60 – 90 percent), and low flows (90 – 100 percent) in accordance with EPA guidance (USEPA, 2007).

In **Section 3.4**, it was established that the numeric target for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 was set at the chronic criterion of 90 mg/L. The LDC is developed using the chronic criterion and multiplying it by the average daily flow and a unit conversion factor (4.172×10^{-3}) .

$$flow (MGD) * 90 (\frac{mg}{L}) * conversion factor = TMDL$$

TSS observations from 2000 - 2023 from all six stations in SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 will be used for calculating TMDL loading and reductions. When TSS loading observations are plotted on the LDC, characteristics of the water quality impairment are shown. Observations that are plotted above the curve are exceeding the TMDL, while those below the curve are in compliance with the water quality standards.

9.1 SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 TMDL Loading Analysis

The TMDL for SD-BS-R-BIG_SIOUX_05 is portrayed in *Figure 9* and by flow zone in *Table 10*. TSS observations collected from SD-BS-R-BIG_SIOUX_05 exceed the TMDL in all flow zones. Samples that exceeded the TSS numeric target of 90 mg/L were most common in the $10^{\text{th}} - 90^{\text{th}}$ percentiles. The TMDL for SD-BS-R-BIG_SIOUX_06 is portrayed in *Figure 10* and by flow zone in *Table 11*. TSS observations collected from SD-BS-R-BIG_SIOUX_06 exceed the TMDL in all flow zones. The most common occurrence of violations occurs during the moist condition flows.

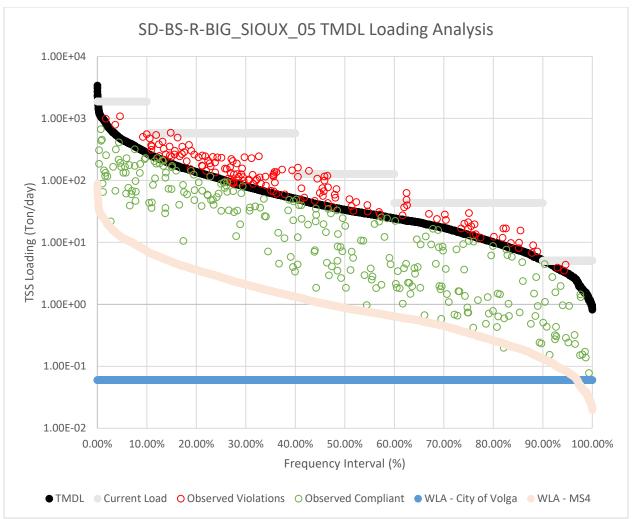


Figure 9 - SD-BS-R-BIG_SIOUX_05 Loading Analysis

	DIC SIQUY OF TADU Table						
Warmwater Semipermanent Fish			BIG SIOUX 05 TMDL Table				
Life Propagation TSS TMDL	High Flows	Moist Conditions	Mid-Range Conditions	Dry Conditions	Low Flows		
Flow Rate	≤ 10.0%	10 - 40.0%	40.0 - 60.0%	60.0 - 90.0%	$\geq 90.0\%$		
WLA - City of Volga (Ton/day)	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02		
WLA - MS4	3.03E+01	6.33E+00	1.28E+00	6.11E-01	1.26E-01		
LA	1.01E+03	2.11E+02	4.25E+01	2.03E+01	4.19E+00		
10% Explicit MOS	1.15E+02	2.41E+01	4.87E+00	2.34E+00	4.87E-01		
TMDL @ 90 mg/L	1.15E+03	2.41E+02	4.87E+01	2.34E+01	4.87E+00		
Current Load	1.88E+03	5.78E+02	1.27E+02	4.31E+01	5.04E+00		
Load Reduction	39%	58%	61.78%	45.78%	3.54%		

 Table 10 - SD-BS-R-BIG_SIOUX_05 TMDL Table

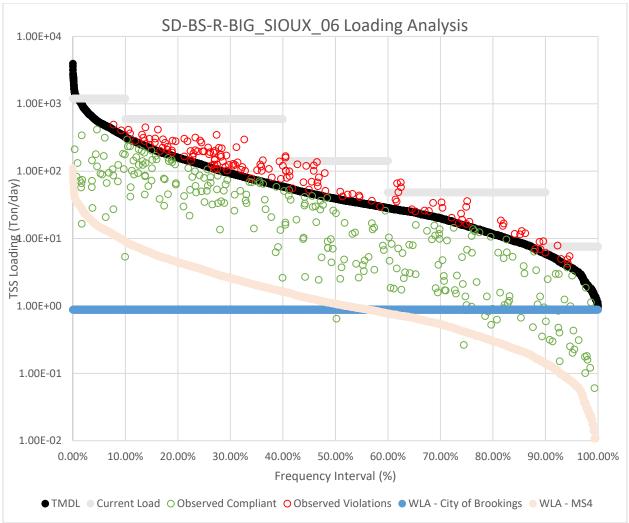


Figure 10 - SD-BS-R-BIG_SIOUX_06 Loading Analysis

		BIG SIOUX 06 TMDL Table						
Warmwater Semipermanent Fish			Mid-Range					
Life Propagation TSS TMDL	High Flows	Moist Conditions	Conditions	Dry Conditions	Low Flows			
Flow Rate	$\leq 10.0\%$	10 - 40.0%	40.0 - 60.0%	60.0 - 90.0%	$\geq 90.0\%$			
WLA - City of Brookings WWTF	8.80E-01	8.80E-01	8.80E-01	8.80E-01	8.80E-01			
WLA - MS4	3.80E+01	7.92E+00	1.57E+00	7.41E-01	1.33E-01			
LA	1.17E+03	2.44E+02	4.86E+01	2.29E+01	4.09E+00			
10% Explicit MOS	1.35E+02	2.81E+01	5.67E+00	2.72E+00	5.67E-01			
TMDL @ 90 mg/L	1.35E+03	2.81E+02	5.67E+01	2.72E+01	5.67E+00			
Current Load	1.19E+03	5.93E+02	1.42E+02	4.83E+01	7.57E+00			
Load Reduction	0%	53%	60%	44%	25%			

Table 11 - SD-BS-R-BIG_SIOUX_06

9.1.1 High Flows

The high flow zone for segment SD-BS-R-BIG_SIOUX_05 represents flows that were greater than or equal to 730.90 MGD (highest 10% of flows). The flows represented in this zone occur on an infrequent basis and are typically the result of significant run-off events such as spring snowmelt or intense rain events. Sediment sources across the watershed have the potential to be conveyed to the stream channel during high flow conditions. These high flows may have a dilution or scouring effect on sediment and so exceedance of the standards was low in this flow zone.

Of the 44 samples that were taken at SD-BS-R-BIG_SIOUX_05 within this flow zone, a total of 5 samples exceeded the numeric target of 90 mg/L. All 44 samples were used to calculate the current load of the zone and estimate reductions. The 95th percentile TSS concentration and flow was calculated at 146.55 mg/L and 3073.79 MGD, respectively. A reduction of 39% is needed in order to comply with the TMDL.

$$90 \frac{mg}{L}$$
 (TMDL Target) * 3073.79 MGD (95th percentile flow) * conversion factor = $1.15E + 03 \left(\frac{Ton}{day}\right)$

The high flow zone for segment SD-BS-R-BIG_SIOUX_06 represents flows that were greater than or equal to 851.94 MGD. Of the 34 samples that were taken at SD-BS-R-BIG_SIOUX_06 within this flow zone, only 2 samples exceeded the numeric target of 90 mg/L. All 34 samples were used to calculate the current load of the zone and estimate reductions. The 95th percentile TSS concentration and flow was calculated at 79.60 mg/L and 3583.98 MGD, respectively. A load reduction is not required to achieve compliance with the TMDL.

$$90 \frac{mg}{L}$$
 (TMDL Target) * 3583.98 MGD (95th percentile flow) * conversion factor = $1.35E + 03 \left(\frac{Ton}{day}\right)$

9.1.2 Moist Conditions

The moist condition zone for segment SD-BS-R-BIG_SIOUX_05 extends from approximately 730.90 – 134.8 MGD. Moist condition flows represent moderate storm events following snow melt, and moderate rainfall events. Of the 162 samples that were taken within this flow zone, a total of 87 samples exceeded 90 mg/L. The 95th percentile TSS concentration and flow was calculated at 215.5 mg/L and 642.75 MGD, respectively. A reduction of 58% is needed in order to comply with the TMDL.

$$90 \frac{mg}{L}$$
 (TMDL Target) * 642.75 MGD (95th percentile flow) * conversion factor = 2.41E + 02 ($\frac{Ton}{day}$)

The moist condition flow zone for segment SD-BS-R-BIG_SIOUX_06 extend approximately 851.94 – 157.10 MGD. Of the 34 samples that were taken, 2 samples exceeded the numeric target of 90 mg/L. All 34 samples were used to calculate the current load of the zone and estimate reductions. The 95th percentile TSS concentration and flow was calculated at 189.60 mg/L and 749.22 MGD, respectively. A load reduction of 53% is needed to comply with the TMDL.

$$90\frac{mg}{L}$$
 (TMDL Target) * 749.22 MGD (95th percentile flow) * conversion factor = $1.35E + 03(\frac{Ton}{day})$

9.1.3 Mid-range Conditions

Mid-range flow conditions for segment SD-BS-R-BIG_SIOUX_05 represent flows approximately from 134.8 – 64.8 MGD. Mid-range flows typically occur mid to late summer when vegetation is mature, and streamflow is sustained between precipitation events. Of the 79 samples that were taken within this flow zone, a total of 29 samples exceeded the numeric target. The 95th percentile TSS concentration and flow was calculated at 235.5 mg/L and 129.59 MGD, respectively. A reduction of 61.78% is needed in order to comply with the TMDL.

$$90\frac{mg}{L}$$
 (TMDL Target) * 129.59 MGD (95th percentile flow) * conversion factor = 4.87E + 01 ($\frac{Ton}{day}$)

The mid-range condition for segment SD-BS-R-BIG_SIOUX_06 extends approximately 157.10 – 75.53 MGD. Of the 80 samples that were taken at SD-BS-R-BIG_SIOUX_06 within this flow zone, a total of 29 samples exceeded the numeric target of 90 mg/L. All 80 samples were used to calculate the current load of the zone and estimate reductions. The 95th percentile TSS concentration and flow was calculated at 224.80 mg/L and 151.05 MGD, respectively. A reduction of 60% is needed to comply with the TMDL.

$$90\frac{mg}{L}$$
 (TMDL Target) * 151.05 MGD (95th percentile flow) * conversion factor = 5.93E + 02 ($\frac{Ton}{day}$)

9.1.4 Dry Conditions

Dry condition flows in segment SD-BS-R-BIG_SIOUX_05 represent flow rates between 64.8 – 26.6 MGD. Dry condition flows are best characterized as below the average base flow conditions influenced by periods of dryness or groundwater sources. TSS sources during dry conditions likely originate in the stream channel during dry flow conditions in winter and midsummer. Of the 106 samples that were taken within this flow zone, a total of 30 samples exceeded 90 mg/L. The 95th percentile TSS concentration and flow was calculated at 166 mg/L and 62.20 MGD, respectively. A reduction of 45.78% is needed in order to comply with the TMDL.

$$90 \frac{mg}{L}$$
 (TMDL Target) * 62.20 MGD (95th percentile flow) * conversion factor = 2.34E + 00 ($\frac{Ton}{day}$)

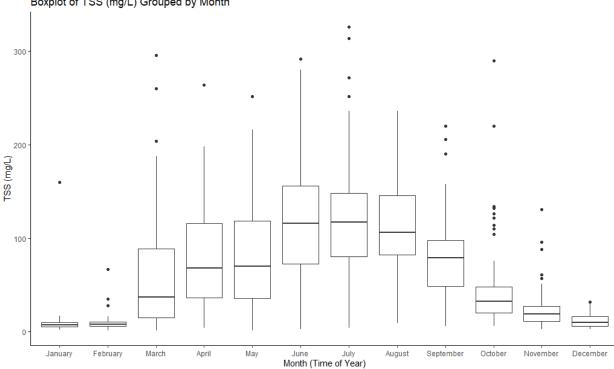
The dry condition for segment SD-BS-R-BIG_SIOUX_06 extends approximately 75.53 – 15.77 MGD. Of the 112 samples that were taken at SD-BS-R-BIG_SIOUX_06 within this flow zone, a total of 33 samples exceeded the numeric target of 90 mg/L. All 112 samples were used to calculate the current load of the zone and estimate reductions. The 95th percentile TSS concentration and flow was calculated at 159.60 mg/L and 72.51 MGD, respectively. A reduction of 44% is needed in the high flow zone to comply with the TMDL.

$$90\frac{mg}{L}(TMDL Target) * 72.51 MGD (95^{th} percentile flow) * conversion factor = 2.72E + 01 (\frac{Ton}{day})$$

9.1.5 Low Flows

The low flow zone for segment SD-BS-R-BIG_SIOUX_06 represents flows at or below 26.6 MGD. Low flows are characterized as the flow of water in a stream during prolonged dry weather. Of the 28 samples that were taken within this flow zone, a total of 3 samples exceeded the numeric target of 90 mg/L. The 95th percentile TSS concentration and flow was calculated at

93.3 mg/L and 12.96 MGD, respectively. A reduction of 3.54% is needed in order to comply with the TMDL.


$$90\frac{mg}{L}$$
 (TMDL Target) * 12.96 MGD (95th percentile flow) * conversion factor = 4.87E + 00 ($\frac{Ton}{day}$)

The low flow zone for segment SD-BS-R-BIG_SIOUX_06 represents flows at or below 15.77 MGD. Of the 32 samples that were taken at SD-BS-R-BIG SIOUX 06 within this flow zone, a total of 5 samples exceeded the numeric target of 90 mg/L. All 32 samples were used to calculate the current load of the zone and estimate reductions. The 95th percentile TSS concentration and flow was calculated at 120 mg/L and 15.11 MGD, respectively. A reduction of 25% is needed in order to comply with the TMDL.

$$90 \frac{mg}{L}$$
 (TMDL Target) * 15.11 MGD (95th percentile flow) * conversion factor = 5.67E + 00 ($\frac{Ton}{day}$)

10.0 Seasonality

Flow values from USGS gage 06480000 and TSS samples collected throughout the assessment period showed seasonal variation as shown in Figure 11 and Figure 12 below. TSS samples collected showed higher variability in the spring and summer months, with samples collected in July having the highest median value. Flows peaked in March and were the highest in the spring and early summer months which is typical of South Dakota streams.

Boxplot of TSS (mg/L) Grouped by Month

Figure 11 - Seasonality of TSS Concentrations

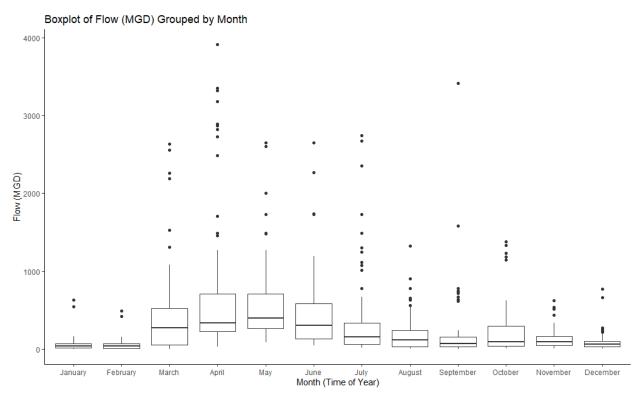


Figure 12 - Seasonality of Flow

11.0 Critical Conditions

During critical condition periods, if water quality standards were met under those conditions, it would be likely that the water quality standards would be met overall (US EPA, 2007). TSS violations in SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 are greatest during 10 – 90% flow frequencies. As a result, remediation efforts should focus on reducing TSS in SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 segments by implementing best management practices that focus on limiting watershed-scale runoff from moist conditions, mid-range conditions, and dry conditions. Implementing these practices will mitigate this critical condition in order to meet reduction goals and maintain the water quality criteria set forth in this TMDL. Proposed BMPs are described in detail in **Section 12.2**.

12.0 Water Quality Improvement Plan and Monitoring Strategy

To ensure attainment of the TMDL, Best Management Practices (BMPs) will need to be implemented. Additional monitoring and evaluation efforts will be targeted toward the effectiveness of implemented BMPs.

12.1 Monitoring Strategy

Monitoring is a necessary component for assuring the attainment of the TMDL. The focus of monitoring is to evaluate methods for reducing loads from identified nonpoint and point sources

of TSS as well as the continued evaluation of TSS conditions in SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06.

Long-term monitoring will continue for segment SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 as part of SD DANR's ambient water monitoring program at WQM station 460662 and 460702, respectively. In addition, East Dakota Water Development District (EDWDD) will continue monitoring at both stations through internal project means and through the efforts of future Rotating Basin Project Partnerships. Sampling is expected to continue indefinitely dependent on resource availability and funding. USGS staff will continue to maintain the continuous stream gage identified as 06480000 so long as it is appropriate. Additional monitoring will be focused on the effectiveness of implemented BMPs.

12.2 Implementation

Watershed-scale implementation projects can be accomplished by using financial and technical assistance through SD DANR. Financial support is administered to implementation projects aiming to protect and improve the water quality in South Dakota. SD DANR administers several major funding programs that provide low interest loans and grants for projects that protect and improve water quality in South Dakota. Funding provided by DANR includes the Consolidated Water Facilities Construction program, Clean Water State Revolving Fund (SRF) program, Section 319 Nonpoint Sources Management Program, and the South Dakota Legislature House Bill 1256 Program (Riparian Buffer Initiative Program).⁴

Working with current 319 implementation projects such as the Big Sioux River Implementation Project and the Prairie Coteau Watershed Improvement and Protection Project provides collaborative solutions for reducing sediment in the Big Sioux River. An educational project, Soil Health Planning and Improvement Project, provides educational outreach programs to producers to help maintain healthy soil through practicing the five soil health principles. Additionally, the City of Brookings has established a *Brookings Master Drainage Plan* in an effort to make improvements to the City's stormwater infrastructure which will aid in maintaining and improving water quality (2008).

SD DANR recommends several BMPs to reduce runoff and sediment sources within the SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 segments. As row crops are the primary contributor to sediment in the Big Sioux River, the following practices are recommended to reduce sediment-laden runoff:

- Relocate livestock feeding and grazing areas away from streams especially sloped areas near streams.
- Protect the riparian corridors and keep permanent vegetation along creek. Unstable banks should be protected to improve erosion control. Restoring vegetation and limiting streambank use will allow these areas to recover.
- Maintain vegetated buffer between stream and cropland or pastureland, use filter strips where needed.
- Control animal feeding operations and ensure proper waste management.

⁴ https://sdlegislature.gov/Session/Bill/22363/220116

- Preliminary evidence suggests that slowing flow by ponding water may have beneficial effects in reducing sediment. Practices that increase infiltration and reduce runoff are beneficial.
- Conserving wetlands and sloughs can slow runoff and improve water quality.
- Top-bank and bank-toe protections.
- Promote soil health to increase infiltration and reduce sediment-laden run off.

Some best management practices to reduce urban stormwater include:

• Utilize best management practices including detention and retention to reduce storm water runoff and sequester bacteria.

12.3 Adaptive Management

SD DANR may adjust the LA and/or WLA allocations in this TMDL to account for new information or circumstances identified during the implementation of the TMDL. If a review of the new information or circumstances indicates that an adjustment to the LA and WLA is appropriate, then the TMDL will be updated following SD DANR programmatic steps including public participation. New information generated during TMDL implementation may include, among other things, monitoring data, BMP effectiveness information and land use information. SD DANR will propose adjustments only in the event that any adjusted LA or WLA will not result in a change to the loading capacity; the adjusted TMDL, including its WLAs and LAs, will be set at a level necessary to implement the applicable water quality standards and any adjusted WLA will be supported by a demonstration that load allocations are practicable. SD DANR will follow EPA guidance for revising or withdrawing TMDLs in accordance with considerations documented in EPA's 2012 draft memo before taking action.⁵

12.4 Public Participation

STATE AGENCIES

South Dakota Department of Agriculture and Natural Resources (SD DANR) was the primary state agency involved in the completion of this assessment. SD DANR provided technical support and equipment throughout the course of the project.

A 30-day public comment period was issued for the original draft TMDL in BLANK. A public notice letter was published in the following local newspapers: BLANK, BLANK, Blank. The draft TMDL document and ability to comment was made available on DANRs One-Stop Public Notice Page at: <u>DANR Public Notices (sd.gov)</u>.

FEDERAL AGENCIES

Environmental Protection Agency (EPA) provided the primary source of funds through the 319(d), 106, and 604(b) sections of the Clean Water Act for approved nonpoint source management projects. EPA provided technical support and review during TMDL Development. EPA's approval letter and decision document are provided in *Appendix D*.

⁵ <u>http://www.epa.gov.sites.production/files/2015-10/documents/draft-tmdl 32212.pdf</u>

LOCAL GOVERNMENT, INDUSTRY, ENVIRONMENTAL, AND OTHER GROUPS, AND PUBLIC AT LARGE

The primary local sponsor for this project was the East Dakota Water Development District (EDWDD). EDWDD was the lead project sponsor of the Rotating Basins – Big Sioux River Assessment Project (2020-2021). EDWDD provided staff, financial, and technical assistance. Other local sponsors of implementation projects include the Big Sioux River Project, and the Prairie Coteau Watershed Improvement and Protection Project. Project personnel frequently collaborated with landowners, addressed their concerns, and elaborated on implementation projects that would be suitable for water quality improvements.

References

- Bankhead, N., & Simon, A. (2009). *Analysis of bank stability and potential load reduction along reaches of the Big Sioux River, South Dakota*. National Sedimentation Laboratory (US).
- City of Brookings. (2015). Small MS4 Storm Water Management Program. 36p.
- Ecological Resource Consultants. (2008). Master Drainage Plan, City of Brookings South Dakota. 200p.
- Klimetz, L., Simon, A., & Schwartz, J. S. (2009). Characterization of Suspended-sediment Transport Conditions for Stable," reference" Streams in Selected Ecoregions of EPA Region 8. US Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory, Watershed Physical Processes Research Unit.
- NOAA National Centers for Environmental information, Climate at a Glance: County Time Series, published May 2024, retrieved on May 21, 2024 from <u>https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/time-series</u>
- Schueler, T.R. (1987). Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments, Washington, DC.
- SD DANR. (2016). Big Sioux River Watershed Strategic Plan. https://danr.sd.gov/Conservation/WatershedProtection/ReportsPublications/LowerBigSio uxStrategicPlan2016.pdf
- SD DANR. (2017). General Water Pollution Control Permit for Concentrated Animal Feeding Operations. <u>https://danr.sd.gov/Agriculture/Livestock/FeedlotPermit/docs/2017GeneralPermit.pd</u>
- SD DANR. (2024). The 2024 South Dakota Integrated Report for Surface Water Quality Assessment. South Dakota Department of Agriculture and Natural Resources, Pierre SD. DANR
- USGS National Landcover Database Impervious Layer derived from NLCD 2001. Accessed February 4, 2020. <u>https://www.usgs.gov/centers/eros/science/national-land-cover-</u> <u>database?qt-science_center_objects=0#qt-science_center_objects</u>
- USEPA. 2007. An Approach for Using Load Duration Curves in Developing TMDLs. U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds, Washington, DC.
- USEPA. 2007. Total Maximum Daily Loads with Stormwater Sources: A Summary of 17 TMDLs.
- Williams-Sether, T. (1992). *Techniques for estimating peak-flow frequency relations for North Dakota streams* (No. 92-4020). US Geological Survey.

Appendix A – Measured Discharge and TSS Data

Observed TSS Loading BIG SIOUX 05										
SampleDate	Segment	StationID	Project	TSS Value (mg/L)	Discharge (cfs)	Discharge (MGD)	Flow Frequency Percentage	Observed Loading (Ton/day)		
09/16/2019	5	CENTBSRR01	EDWQSPZ1	13	5285.32	3415.90	0.33%	1.85E+02		
04/25/2001	5	460662	AMBIENT	22	5189.08	3353.70	0.36%	3.08E+02		
04/09/2001	5	NCENBSRR01	NCENBSR1	56	4435.18	2866.46	0.69%	6.70E+02		
04/13/2001	5	NCENBSRR01	NCENBSR1	37	4363.00	2819.80	0.77%	4.35E+02		
04/23/2018	5	460662	Ambient	40	4218.63	2726.50	0.92%	4.55E+02		
07/15/2019	5	CENTBSRR01	EDWQSPZ1	8	4130.41	2669.48	1.05%	8.91E+01		
05/21/2019	5	CENTBSRR01	EDWQSPZ1	6	4026.15	2602.10	1.15%	6.51E+01		
04/16/2019	5	460662	Ambient	14	3841.68	2482.88	1.34%	1.45E+02		
07/16/2019	5	460662	Ambient	12	3641.18	2353.29	1.57%	1.18E+02		
06/16/2010	5	460662	AMBIENT	14	3512.85	2270.36	1.67%	1.33E+02		
03/12/2020	5	460662	Ambient	105	3496.81	2259.99	1.71%	9.90E+02		
03/23/2010	5	460662	AMBIENT	28	3392.55	2192.61	1.78%	2.56E+02		
05/08/2001	5	NCENBSRR01	NCENBSR1	14	3095.80	2000.82	2.03%	1.17E+02		
06/03/2019	5	CENTBSRR01	EDWQSPZ1	3	2694.79	1741.64	2.72%	2.18E+01		
09/23/2019	5	CENTBSRR01	EDWQSPZ1	25	2454.19	1586.14	3.20%	1.65E+02		
07/24/2018	5	460662	Ambient	127	2301.80	1487.65	3.62%	7.88E+02		
05/11/2011	5	460662	Ambient	11	2293.78	1482.47	3.63%	6.80E+01		
04/18/2023	5	460662	Ambient	52	2261.70	1461.74	3.74%	3.17E+02		
08/19/2019	5	CENTBSRR01	EDWQSPZ1	39	2053.18	1326.97	4.29%	2.16E+02		
03/21/2007	5	460662	AMBIENT	75	2029.11	1311.42	4.37%	4.10E+02		
05/09/2012	5	460662	Ambient	204	1972.97	1275.13	4.58%	1.09E+03		
04/07/2020	5	460662	Ambient	36	1972.97	1275.13	4.61%	1.92E+02		
10/07/2019	5	CENTBSRR01	EDWQSPZ1	32	1908.81	1233.66	4.85%	1.65E+02		
10/16/2019	5	460662	Ambient	27	1828.61	1181.83	5.25%	1.33E+02		
10/10/2017	5	CENTBSRR01	EDWQSPZ1	35	1772.47	1145.55	5.58%	1.67E+02		
06/15/2001	5	NCENBSRR01	NCENBSR1	28	1756.43	1135.18	5.73%	1.33E+02		
06/17/2019	5	CENTBSRR01	EDWQSPZ1	13	1748.41	1130.00	5.81%	6.13E+01		
07/06/2011	5	460662	Ambient	49	1724.35	1114.44	5.91%	2.28E+02		
07/14/2010	5	460662	AMBIENT	17	1660.18	1072.98	6.26%	7.61E+01		
05/09/2018	5	CENTBSRR01	EDWQSPZ1	40	1636.12	1057.43	6.46%	1.76E+02		
06/14/2011	5	CENTBSRR01	EDWQSPZ1	9	1620.08	1047.06	6.56%	3.93E+01		
06/15/2011	5	460662	Ambient	14	1588.00	1026.33	6.89%	5.99E+01		
07/01/2019	5	CENTBSRR01	EDWQSPZ1	16	1571.96	1015.96	7.01%	6.78E+01		
06/25/2013	5	CENTBSRR01	EDWQSPZ1	80	1475.72	953.76	7.55%	3.18E+02		
05/16/2018	5	460662	Ambient	43	1475.72	953.76	7.56%	1.71E+02		
05/23/2001	5	460662	AMBIENT	25	1443.64	933.02	7.70%	9.73E+01		
04/14/2010	5	460662	AMBIENT	12	1443.64	933.02	7.72%	4.67E+01		
03/19/2019	5	460662	Ambient	17	1435.62	927.84	7.77%	6.58E+01		
05/06/2020	5	460662	Ambient	37	1323.34	855.27	8.60%	1.32E+02		
05/24/2017	5	CENTBSRR01	EDWQSPZ1	52	1315.32	850.09	8.65%	1.84E+02		
06/04/2014	5	460662	Ambient	150	1243.13	803.44	9.21%	5.03E+02		
08/14/2019	5	460662	Ambient	68	1203.03	777.52	9.56%	2.21E+02		

06/25/2001	5	460662	AMBIENT	72	1178.97	761.97	9.71%	2.29E+02
05/09/2002	5	NCENBSRR01	NCENBSR1	182	1130.85	730.87	9.99%	5.55E+02
03/21/2018	5	460662	Ambient	15	1074.71	694.58	10.46%	4.35E+01
05/12/2022	5	460662	Ambient	166	1066.69	689.40	10.60%	4.77E+02
07/05/2018	5	CENTBSRR01	EDWQSPZ1	132	1034.61	668.67	10.90%	3.68E+02
09/04/2019	5	460662	Ambient	112	1034.61	668.67	10.91%	3.12E+02
05/18/2010	5	460662	AMBIENT	13	1026.59	663.48	10.94%	3.60E+01
07/27/2011	5	CENTBSRR01	EDWQSPZ1	128	1026.59	663.48	10.97%	3.54E+02
12/18/2019	5	460662	Ambient	16	1026.59	663.48	11.01%	4.43E+01
05/24/2018	5	CENTBSRR01	EDWQSPZ1	31	1010.55	653.12	11.24%	8.45E+01
09/26/2018	5	CENTBSRR01	EDWQSPZ1	76	994.51	642.75	11.53%	2.04E+02
04/16/2007	5	460662	AMBIENT	41	978.47	632.38	11.65%	1.08E+02
09/26/2017	5	CENTBSRR01	EDWQSPZ1	206	970.45	627.20	11.87%	5.39E+02
07/25/2001	5	NCENBSRR01	NCENBSR1	72	962.43	622.02	11.92%	1.87E+02
09/14/2010	5	460662	Ambient	89	954.41	616.83	12.08%	2.29E+02
06/02/2020	5	460662	Ambient	153	930.34	601.28	12.43%	3.84E+02
06/08/2022	5	460662	Ambient	100	922.32	596.10	12.54%	2.49E+02
06/18/2008	5	460662	AMBIENT	76	914.30	590.92	12.57%	1.87E+02
05/23/2022	5	CENTBSRR01	EDWQSPZ1	89	882.22	570.18	13.11%	2.12E+02
08/03/2011	5	460662	Ambient	180	874.20	565.00	13.19%	4.24E+02
08/29/2017	5	CENTBSRR01	EDWQSPZ1	88	866.18	559.81	13.26%	2.06E+02
04/12/2006	5	460662	AMBIENT	74	858.16	554.63	13.34%	1.71E+02
06/17/2014	5	CENTBSRR01	EDWQSPZ1	140	858.16	554.63	13.42%	3.24E+02
08/16/2010	5	460662	Ambient	95	842.12	544.26	13.61%	2.16E+02
01/07/2020	5	460662	Ambient	13	842.12	544.26	13.69%	2.95E+01
10/17/2018	5	CENTBSRR01	EDWQSPZ1	49	834.10	539.08	13.76%	1.10E+02
11/14/2019	5	460662	Ambient	16	834.10	539.08	13.77%	3.60E+01
07/24/2001	5	460662	AMBIENT	118	826.08	533.90	13.83%	2.63E+02
04/15/2009	5	460662	AMBIENT	60	826.08	533.90	13.87%	1.34E+02
05/16/2007	5	460662	AMBIENT	34	798.81	516.27	14.37%	7.32E+01
04/15/2021	5	460662	Ambient	166	786.78	508.50	14.59%	3.52E+02
06/20/2016	5	460662	Ambient	120	783.58	506.42	14.67%	2.54E+02
06/08/2020	5	CENTBSRR01	RTBNRIST	280	776.36	501.76	14.82%	5.86E+02
10/19/2010	5	460662	Ambient	35	767.53	496.06	14.98%	7.24E+01
05/15/2002	5	460662	AMBIENT	116	766.73	495.54	14.99%	2.40E+02
06/15/2005	5	460662	AMBIENT	79	763.52	493.47	15.06%	1.63E+02
05/10/2023	5	460662	Ambient	84	758.71	490.36	15.13%	1.72E+02
04/16/2021	5	CENTBSRR01	RTBNRIST	134	725.83	469.10	15.61%	2.62E+02
03/25/2021	5	CENTBSRR01	RTBNRIST	154	724.23	468.07	15.67%	3.01E+02
05/14/2014	5	460662	Ambient	75	710.59	459.25	15.94%	1.44E+02
03/19/2003	5	460662	AMBIENT	260	700.16	452.52	16.20%	4.91E+02
11/15/2010	5	460662	Ambient	22	683.32	441.63	16.54%	4.05E+01
03/09/2016	5	460662	Ambient	134	678.51	438.52	16.63%	2.45E+02
06/17/2013	5	460662	Ambient	150	659.26	426.08	17.08%	2.67E+02
04/09/2014	5	460662	Ambient	198	656.05	424.01	17.17%	3.50E+02
10/24/2017	5	460662	Ambient	48	652.85	421.93	17.33%	8.45E+01
02/11/2020	5	460662	Ambient	6	652.85	421.93	17.38%	1.06E+01
05/21/2008	5	460662	AMBIENT	37	650.44	420.38	17.50%	6.49E+01
06/13/2022	5	CENTBSRR01	EDWQSPZ1	163	649.64	419.86	17.56%	2.86E+02
07/10/2013	5	460662	QC	119	633.60	409.49	18.06%	2.03E+02

10/25/2017	5	CENTBSRR01	EDWQSPZ1	35	630.39	407.42	18.12%	5.95E+01
06/22/2020	5	CENTBSRR01	RTBNRIST	226	612.74	396.02	18.50%	3.73E+02
05/22/2023	5	CENTBSRR01	EDWQSPZ1	94	602.32	389.28	18.84%	1.53E+02
06/22/2016	5	CENTBSRR01	EDWQSPZ1	88	599.11	387.20	18.92%	1.42E+02
04/19/2021	5	CENTBSRR01	RTBNRIST	186	596.70	385.65	18.99%	2.99E+02
08/26/2015	5	CENTBSRR01	EDWQSPZ1	79	579.06	374.25	19.48%	1.23E+02
08/15/2016	5	460662	Ambient	169	575.05	371.65	19.57%	2.62E+02
06/06/2007	5	460662	AMBIENT	31	573.45	370.62	19.61%	4.79E+01
10/23/2018	5	460662	Ambient	45	572.64	370.10	19.64%	6.95E+01
04/08/2002	5	NCENBSRR01	NCENBSR1	160	546.98	353.51	20.44%	2.36E+02
05/29/2013	5	CENTBSRR01	EDWQSPZ1	63	546.98	353.51	20.48%	9.29E+01
05/06/2009	5	460662	AMBIENT	27	529.33	342.11	21.06%	3.85E+01
08/22/2011	5	CENTBSRR01	EDWQSPZ1	122	527.73	341.07	21.14%	1.74E+02
05/10/2006	5	460662	AMBIENT	48	526.13	340.04	21.20%	6.81E+01
06/19/2018	5	CENTBSRR01	EDWQSPZ1	178	526.13	340.04	21.22%	2.53E+02
07/02/2014	5	CENTBSRR01	EDWQSPZ1	120	525.32	339.52	21.24%	1.70E+02
08/13/2014	5	460662	Ambient	178	509.28	329.15	21.82%	2.44E+02
05/15/2013	5	460662	Ambient	105	504.47	326.04	21.99%	1.43E+02
07/20/2016	5	CENTBSRR01	EDWQSPZ1	44	498.06	321.89	22.24%	5.91E+01
04/11/2017	5	460662	QC	43	494.85	319.82	22.32%	5.74E+01
06/06/2018	5	460662	Ambient	156	494.05	319.30	22.40%	2.08E+02
05/15/2012	5	CENTBSRR01	EDWQSPZ1	144	485.22	313.60	22.70%	1.88E+02
03/21/2012	5	460662	AMBIENT	89	483.62	312.56	22.79%	1.16E+02
05/01/2002	5	NCENBSRR01	NCENBSR1	130	481.21	311.01	22.90%	1.69E+02
03/19/2014	5	460662	Ambient	37	481.21	311.01	22.97%	4.80E+01
07/09/2015	5	460662	Ambient	188	471.59	304.79	23.32%	2.39E+02
05/21/2014	5	CENTBSRR01	EDWQSPZ1	38	470.79	304.27	23.37%	4.82E+01
10/31/2018	5	CENTBSRR01	EDWQSPZ1	32	467.58	302.20	23.48%	4.03E+01
08/12/2015	5	460662	Ambient	156	461.16	298.05	23.78%	1.94E+02
04/25/2013	5	CENTBSRR01	EDWQSPZ1	108	460.36	297.53	23.80%	1.34E+02
10/12/2016	5	460662	Ambient	44	453.94	293.38	24.13%	5.39E+01
07/11/2022	5	CENTBSRR01	EDWQSPZ1	193	451.54	291.83	24.23%	2.35E+02
11/08/2017	5	CENTBSRR01	EDWQSPZ1	51	445.12	287.68	24.50%	6.12E+01
03/08/2017	5	460662	Ambient	76	429.08	277.32	25.02%	8.79E+01
04/26/2017	5	CENTBSRR01	EDWQSPZ1	28	427.48	276.28	25.05%	3.23E+01
07/06/2020	5	CENTBSRR01	RTBNRIST	202	427.48	276.28	25.07%	2.33E+02
06/21/2017	5	CENTBSRR01	EDWQSPZ1	82	416.25	269.02	25.52%	9.20E+01
08/01/2018	5	CENTBSRR01	EDWQSPZ1	84	413.04	266.95	25.65%	9.36E+01
03/28/2006	5	460662	AMBIENT	68	411.44	265.91	25.70%	7.54E+01
06/02/2000	5	CENTBSRR01	CENTBSR1	140	410.64	265.39	25.77%	1.55E+02
10/13/2005	5	460662	QC	76	401.01	259.17	26.07%	8.22E+01
06/12/2017	5	460662	Ambient	142	401.01	259.17	26.15%	1.54E+02
05/10/2017	5	460662	AMBIENT	87	399.41	258.14	26.23%	9.37E+01
04/22/2002	5	460662	AMBIENT	61	398.60	257.62	26.24%	6.56E+01
06/07/2017	5	CENTBSRR01	EDWQSPZ1	100	394.59	255.03	26.44%	1.06E+02
11/14/2018	5	460662	Ambient	31	392.99	253.99	26.56%	3.28E+01
06/03/2015	5	460662	Ambient	156	385.77	249.32	26.80%	1.62E+02
04/16/2008	5	460662	AMBIENT	128	382.56	247.25	26.95%	1.32E+02
06/08/2016	5	CENTBSRR01	EDWQSPZ1	101	381.76	246.73	26.99%	1.04E+02
08/17/2016	5	CENTBSRR01	EDWQSPZ1	90	380.96	246.21	27.03%	9.24E+01

05/03/2021	5	CENTBSRR01	RTBNRIST	216	380.16	245.70	27.08%	2.21E+02
03/09/2021	5	CENTBSRR01	RTBNRIST	204	372.14	240.51	27.37%	2.05E+02
05/11/2017	5	CENTBSRR01	EDWQSPZ1	67	370.53	239.48	27.45%	6.69E+01
08/08/2018	5	460662	Ambient	94	370.53	239.48	27.47%	9.39E+01
04/24/2012	5	CENTBSRR01	EDWQSPZ1	92	369.73	238.96	27.49%	9.17E+01
07/16/2014	5	460662	Ambient	90	369.73	238.96	27.50%	8.97E+01
05/12/2016	5	CENTBSRR01	EDWQSPZ1	126	368.93	238.44	27.60%	1.25E+02
11/18/2009	5	460662	AMBIENT	31	368.13	237.92	27.64%	3.08E+01
12/08/2010	5	460662	QC	13	360.91	233.26	28.03%	1.27E+01
06/06/2012	5	460662	Ambient	194	359.31	232.22	28.17%	1.88E+02
08/21/2001	5	460662	AMBIENT	132	356.90	230.66	28.24%	1.27E+02
05/18/2005	5	460662	AMBIENT	34	356.90	230.66	28.26%	3.27E+01
05/20/2015	5	460662	Ambient	121	350.48	226.52	28.57%	1.14E+02
04/27/2016	5	CENTBSRR01	EDWQSPZ1	97	347.28	224.44	28.76%	9.08E+01
12/11/2017	5	460662	Ambient	21	345.67	223.41	28.84%	1.96E+01
04/06/2016	5	460662	Ambient	67	343.27	221.85	29.07%	6.20E+01
05/11/2016	5	460662	Ambient	136	343.27	221.85	29.09%	1.26E+02
07/18/2018	5	CENTBSRR01	EDWQSPZ1	170	340.86	220.30	29.25%	1.56E+02
11/02/2021	5	460662	Ambient	88	339.26	219.26	29.36%	8.05E+01
04/13/2005	5	460662	QC	124	337.65	218.22	29.42%	1.13E+02
09/12/2011	5	CENTBSRR01	EDWQSPZ1	108	335.24	216.67	29.57%	9.76E+01
04/15/2013	5	460662	QC	264	332.04	214.60	29.73%	2.36E+02
09/14/2011	5	460662	Ambient	120	319.20	206.30	30.55%	1.03E+02
04/04/2012	5	460662	Ambient	116	319.20	206.30	30.56%	9.98E+01
11/16/2017	5	460662	Ambient	38	316.80	204.75	30.75%	3.25E+01
10/18/2016	5	CENTBSRR01	EDWQSPZ1	43	316.00	204.23	30.83%	3.66E+01
07/14/2020	5	460662	Ambient	272	311.99	201.64	31.15%	2.29E+02
08/02/2017	5	CENTBSRR01	EDWQSPZ1	148	307.98	199.05	31.38%	1.23E+02
08/28/2001	5	NCENBSRR01	NCENBSR1	107	306.37	198.01	31.47%	8.84E+01
10/26/2009	5	460662	AMBIENT	47	300.76	194.38	31.88%	3.81E+01
04/12/2022	5	460662	Ambient	124	299.15	193.34	32.05%	1.00E+02
05/12/2021	5	460662	Ambient	132	295.95	191.27	32.28%	1.05E+02
07/14/2000	5	CENTBSRR01	CENTBSR1	314	288.73	186.60	32.64%	2.44E+02
07/06/2022	5	460662	Ambient	144	287.93	186.09	32.81%	1.12E+02
09/06/2017	5	460662	Ambient	47	286.32	185.05	32.89%	3.63E+01
06/16/2004	5	460662	AMBIENT	116	281.51	181.94	33.05%	8.81E+01
08/27/2014	5	CENTBSRR01	EDWQSPZ1	68	275.09	177.79	33.62%	5.04E+01
04/12/2016	5	CENTBSRR01	EDWQSPZ1	36	272.69	176.24	33.78%	2.65E+01
09/21/2005	5	460662	AMBIENT	158	270.28	174.68	33.96%	1.15E+02
07/30/2013	5	CENTBSRR01	EDWQSPZ1	114	268.68	173.65	34.05%	8.26E+01
09/13/2016	5	CENTBSRR01	EDWQSPZ1	36	268.68	173.65	34.06%	2.61E+01
12/10/2018	5	460662	Ambient	10	264.67	171.05	34.47%	7.14E+00
09/17/2001	5	460662	AMBIENT	98	256.65	165.87	35.09%	6.78E+01
07/29/2015	5	CENTBSRR01	EDWQSPZ1	178	253.44	163.80	35.51%	1.22E+02
08/03/2020	5	CENTBSRR01	RTBNRIST	170	252.64	163.28	35.57%	1.16E+02
09/10/2018	5	460662	Ambient	98	251.83	162.76	35.61%	6.65E+01
07/22/2009	5	460662	AMBIENT	188	251.03	162.24	35.69%	1.27E+02
07/20/2020	5	CENTBSRR01	RTBNRIST	204	249.43	161.21	35.78%	1.37E+02
07/01/2015	5	CENTBSRR01	EDWQSPZ1	138	248.63	160.69	35.88%	9.25E+01
05/24/2000	5	460662	AMBIENT	206	245.42	158.61	36.18%	1.36E+02

08/28/2018	5	CENTBSRR01	EDWQSPZ1	92	245.42	158.61	36.24%	6.09E+01
03/26/2008	5	460662	AMBIENT	22	240.61	155.50	36.56%	1.43E+01
03/16/2011	5	460662	Ambient	7	240.61	155.50	36.71%	4.54E+00
08/12/2020	5	460662	Ambient	236	234.99	151.88	37.34%	1.50E+02
10/19/2011	5	460662	QC	19	228.58	147.73	37.81%	1.17E+01
08/07/2013	5	460662	Ambient	97	227.77	147.21	37.88%	5.96E+01
08/13/2013	5	CENTBSRR01	EDWQSPZ1	55	222.16	143.58	38.55%	3.29E+01
05/25/2016	5	CENTBSRR01	EDWQSPZ1	82	219.75	142.03	38.77%	4.86E+01
01/20/2011	5	460662	Ambient	10	216.55	139.95	39.08%	5.84E+00
05/25/2021	5	CENTBSRR01	RTBNRIST	252	214.14	138.40	39.37%	1.46E+02
12/12/2016	5	460662	QC	7	212.54	137.36	39.54%	4.01E+00
09/26/2001	5	NCENBSRR01	NCENBSR1	40	210.93	136.33	39.58%	2.27E+01
09/15/2016	5	460662	Ambient	81	210.93	136.33	39.63%	4.61E+01
02/09/2011	5	460662	Ambient	6	208.53	134.77	39.94%	3.37E+00
09/12/2018	5	CENTBSRR01	EDWQSPZ1	88	206.92	133.73	40.21%	4.91E+01
11/09/2011	5	460662	Ambient	8	204.52	132.18	40.47%	4.41E+00
11/02/2016	5	CENTBSRR01	EDWQSPZ1	22	204.52	132.18	40.49%	1.21E+01
06/03/2021	5	460662	Ambient	292	204.52	132.18	40.51%	1.61E+02
06/28/2000	5	CENTBSRR01	CENTBSR1	208	203.71	131.66	40.52%	1.14E+02
10/16/2007	5	460662	AMBIENT	73	201.31	130.10	40.76%	3.96E+01
04/21/2003	5	460662	AMBIENT	90	199.70	129.07	41.11%	4.85E+01
05/14/2003	5	460662	AMBIENT	74	198.90	128.55	41.19%	3.97E+01
06/24/2009	5	460662	AMBIENT	140	198.10	128.03	41.24%	7.48E+01
09/10/2014	5	CENTBSRR01	EDWQSPZ1	45	198.10	128.03	41.26%	2.40E+01
08/15/2018	5	CENTBSRR01	EDWQSPZ1	102	192.49	124.40	41.81%	5.29E+01
09/28/2016	5	CENTBSRR01	EDWQSPZ1	39	184.46	119.22	42.57%	1.94E+01
10/13/2021	5	460662	Ambient	290	182.86	118.18	42.77%	1.43E+02
09/12/2017	5	CENTBSRR01	EDWQSPZ1	15	174.04	112.48	43.86%	7.04E+00
07/14/2004	5	460662	AMBIENT	100	173.24	111.96	43.93%	4.67E+01
11/09/2016	5	460662	Ambient	16	173.24	111.96	43.96%	7.47E+00
11/17/2020	5	460662	Ambient	47	172.43	111.44	44.10%	2.19E+01
09/27/2006	5	460662	AMBIENT	76	171.63	110.93	44.14%	3.52E+01
07/05/2017	5	CENTBSRR01	EDWQSPZ1	60	171.63	110.93	44.20%	2.78E+01
01/10/2019	5	460662	Ambient	4	171.63	110.93	44.21%	1.85E+00
08/13/2008	5	460662	AMBIENT	232	170.03	109.89	44.43%	1.06E+02
06/17/2015	5	CENTBSRR01	EDWQSPZ1	140	166.82	107.82	44.96%	6.30E+01
08/14/2017	5	460662	Ambient	170	163.61	105.74	45.47%	7.50E+01
08/16/2017	5	CENTBSRR01	EDWQSPZ1	128	162.81	105.22	45.58%	5.62E+01
10/06/2004	5	460662	AMBIENT	45	162.01	104.71	45.68%	1.97E+01
06/11/2002	5	NCENBSRR01	NCENBSR1	154	161.21	104.19	45.77%	6.69E+01
07/17/2017	5	460662	Ambient	228	161.21	104.19	45.87%	9.91E+01
06/07/2021	5	CENTBSRR01	RTBNRIST	267	161.21	104.19	45.90%	1.16E+02
05/25/2004	5	460662	AMBIENT	34	159.60	103.15	46.20%	1.46E+01
02/14/2017	5	460662	AMBIENT	11	158.80	102.63	46.37%	4.71E+00
06/27/2000	5	460662	AMBIENT	280	157.20	101.60	46.48%	1.19E+02
07/30/2014	5	CENTBSRR01	EDWQSPZ1	102	157.20	101.60	46.56%	4.32E+01
08/17/2020	5	CENTBSRR01	RTBNRIST	182	157.20	101.60	46.58%	7.71E+01
07/15/2015	5	CENTBSRR01	EDWQSPZ1	82	156.39	101.08	46.68%	3.46E+01
11/16/2016	5	CENTBSRR01	EDWQSPZ1	7	155.59	100.56	46.80%	2.94E+00
06/26/2023	5	CENTBSRR01	EDWQSPZ1	71	153.19	99.00	47.19%	2.93E+01

12/09/2015	5	460662	Ambient	10	152.38	98.49	47.36%	4.11E+00
06/13/2023	5	460662	Ambient	92	149.98	96.93	47.64%	3.72E+01
06/25/2002	5	460662	AMBIENT	148	147.57	95.38	47.97%	5.89E+01
10/18/2021	5	CENTBSRR01	RTBNRIST	132	147.57	95.38	48.09%	5.25E+01
06/19/2012	5	CENTBSRR01	EDWQSPZ1	184	145.97	94.34	48.33%	7.24E+01
09/08/2015	5	CENTBSRR01	EDWQSPZ1	84	145.17	93.82	48.44%	3.29E+01
10/23/2001	5	NCENBSRR01	NCENBSR1	9	144.36	93.30	48.50%	3.50E+00
11/28/2001	5	460662	AMBIENT	13	144.36	93.30	48.52%	5.06E+00
12/17/2001	5	460662	AMBIENT	22	144.36	93.30	48.54%	8.56E+00
02/27/2002	5	460662	AMBIENT	35	144.36	93.30	48.59%	1.36E+01
11/06/2007	5	460662	AMBIENT	22	141.96	91.75	49.13%	8.42E+00
10/29/2001	5	460662	AMBIENT	7	141.16	91.23	49.24%	2.66E+00
11/19/2008	5	460662	AMBIENT	19	140.35	90.71	49.51%	7.19E+00
05/06/2015	5	CENTBSRR01	EDWQSPZ1	65	140.35	90.71	49.58%	2.46E+01
03/28/2000	5	460662	AMBIENT	50	137.15	88.64	50.10%	1.85E+01
02/13/2019	5	460662	Ambient	5	137.15	88.64	50.21%	1.85E+00
07/19/2017	5	CENTBSRR01	EDWQSPZ1	138	133.94	86.56	50.92%	4.98E+01
11/30/2005	5	460662	AMBIENT	10	132.33	85.53	51.16%	3.57E+00
07/15/2008	5	460662	AMBIENT	108	131.53	85.01	51.35%	3.83E+01
10/16/2013	5	CENTBSRR01	EDWQSPZ1	20	131.53	85.01	51.38%	7.09E+00
11/16/2004	5	460662	AMBIENT	16	129.93	83.97	51.66%	5.61E+00
08/30/2016	5	CENTBSRR01	EDWQSPZ1	92	129.93	83.97	51.75%	3.22E+01
09/03/2020	5	460662	Ambient	129	128.32	82.94	52.33%	4.46E+01
09/22/2014	5	CENTBSRR01	EDWQSPZ1	32	124.31	80.34	53.25%	1.07E+01
12/09/2020	5	460662	Ambient	32	122.71	79.31	53.74%	1.06E+01
12/22/2021	5	460662	Ambient	9	121.91	78.79	53.95%	2.96E+00
01/07/2016	5	460662	Ambient	3	120.30	77.75	54.44%	9.73E-01
06/14/2006	5	460662	AMBIENT	124	119.50	77.23	54.54%	4.00E+01
04/15/2015	5	460662	Ambient	98	119.50	77.23	54.61%	3.16E+01
11/18/2013	5	460662	Ambient	12	117.10	75.68	55.24%	3.79E+00
01/11/2006	5	460662	AMBIENT	8	116.29	75.16	55.42%	2.51E+00
12/21/2009	5	460662	AMBIENT	9	116.29	75.16	55.57%	2.82E+00
09/08/2020	5	CENTBSRR01	RTBNRIST	64	114.69	74.12	56.01%	1.98E+01
02/15/2006	5	460662	AMBIENT	6	113.09	73.09	56.31%	1.83E+00
08/08/2022	5	460662	Ambient	102	112.28	72.57	56.92%	3.09E+01
04/27/2000	5	460662	AMBIENT	72	111.48	72.05	56.94%	2.16E+01
07/07/2016	5	CENTBSRR01	EDWQSPZ1	94	111.48	72.05	57.08%	2.83E+01
08/03/2016	5	CENTBSRR01	EDWQSPZ1	86	109.88	71.01	57.38%	2.55E+01
01/19/2017	5	460662	AMBIENT	7	109.88	71.01	57.40%	2.07E+00
09/21/2020	5	CENTBSRR01	RTBNRIST	42	108.27	69.98	58.00%	1.23E+01
09/14/2015	5	460662	Ambient	86	105.06	67.90	58.53%	2.44E+01
10/07/2020	5	460662	Ambient	20	104.26	67.39	59.02%	5.62E+00
03/29/2005	5	460662	AMBIENT	16	102.66	66.35	59.23%	4.43E+00
07/06/2016	5	460662	Ambient	82	100.25	64.79	60.18%	2.22E+01
01/09/2012	5	460662	Ambient	8	99.45	64.27	60.31%	2.15E+00
02/26/2018	5	460662	Ambient	7	98.65	63.76	60.50%	1.86E+00
10/08/2014	5	CENTBSRR01	EDWQSPZ1	13	97.85	63.24	60.70%	3.43E+00
12/21/2005	5	460662	AMBIENT	7	96.24	62.20	61.09%	1.82E+00
08/17/2009	5	460662	AMBIENT	106	95.44	61.68	61.67%	2.73E+01
12/14/2011	5	460662	Ambient	4	95.44	61.68	61.69%	1.03E+00

11/04/2015	5	460662	Ambient	15	94.64	61.16	61.95%	3.83E+00
08/09/2023	5	460662	Ambient	144	94.64	61.16	61.99%	3.67E+01
12/18/2020	5	CENTBSRR01	RTBNRIST	18	93.03	60.13	62.39%	4.52E+00
07/20/2005	5	460662	AMBIENT	196	92.23	59.61	62.46%	4.87E+01
07/11/2007	5	460662	AMBIENT	252	92.23	59.61	62.48%	6.27E+01
01/14/2010	5	460662	AMBIENT	160	92.23	59.61	62.56%	3.98E+01
11/17/2015	5	CENTBSRR01	EDWQSPZ1	9	92.23	59.61	62.77%	2.24E+00
02/15/2012	5	460662	Ambient	9	91.43	59.09	63.02%	2.22E+00
01/11/2021	5	460662	Ambient	6	91.43	59.09	63.26%	1.48E+00
10/19/2020	5	CENTBSRR01	RTBNRIST	8	90.63	58.57	63.59%	1.95E+00
10/16/2008	5	460662	AMBIENT	16	89.02	57.54	64.05%	3.84E+00
12/22/2020	5	CENTBSRR01	RTBNRIST	13	89.02	57.54	64.19%	3.12E+00
09/11/2013	5	460662	Ambient	47	88.22	57.02	64.54%	1.12E+01
03/31/2004	5	460662	AMBIENT	17	87.42	56.50	64.74%	4.01E+00
11/06/2014	5	460662	QC	8	85.82	55.46	65.26%	1.85E+00
07/11/2023	5	460662	QC	40	85.82	55.46	65.32%	9.26E+00
02/02/2021	5	460662	Ambient	3	82.61	53.39	66.08%	6.68E-01
09/18/2013	5	CENTBSRR01	EDWQSPZ1	57	81.00	52.35	66.36%	1.24E+01
10/16/2006	5	460662	AMBIENT	134	79.72	51.52	66.98%	2.88E+01
08/15/2022	5	CENTBSRR01	EDWQSPZ1	44	78.04	50.44	67.45%	9.26E+00
06/11/2003	5	460662	AMBIENT	80	76.91	49.71	67.80%	1.66E+01
10/09/2013	5	460662	Ambient	22	75.87	49.04	68.38%	4.50E+00
07/09/2012	5	460662	QC	118	74.99	48.47	68.61%	2.39E+01
09/19/2007	5	460662	AMBIENT	79	74.27	48.00	68.84%	1.58E+01
07/17/2023	5	CENTBSRR01	EDWQSPZ1	42	73.55	47.53	68.99%	8.33E+00
12/15/2004	5	460662	AMBIENT	10	73.22	47.33	69.09%	1.97E+00
01/27/2002	5	460662	AMBIENT	9	72.18	46.65	69.32%	1.75E+00
12/05/2007	5	460662	AMBIENT	3	72.18	46.65	69.47%	5.84E-01
03/11/2015	5	460662	Ambient	10	72.18	46.65	69.60%	1.95E+00
06/23/2021	5	CENTBSRR01	RTBNRIST	44	71.86	46.44	69.76%	8.53E+00
09/23/2015	5	CENTBSRR01	EDWQSPZ1	38	71.62	46.29	69.84%	7.34E+00
08/16/2007	5	460662	AMBIENT	148	70.34	45.46	70.20%	2.81E+01
10/07/2015	5	CENTBSRR01	EDWQSPZ1	20	69.21	44.73	70.39%	3.73E+00
07/27/2000	5	460662	AMBIENT	124	68.97	44.58	70.41%	2.31E+01
02/24/2000	5	460662	AMBIENT	8	68.17	44.06	70.63%	1.47E+00
02/11/2015	5	460662	Ambient	6	67.37	43.54	71.02%	1.09E+00
07/12/2021	5	CENTBSRR01	RTBNRIST	4	63.68	41.16	72.14%	6.87E-01
09/15/2009	5	460662	AMBIENT	46	62.08	40.12	72.54%	7.70E+00
01/22/2015	5	460662	Ambient	4	60.95	39.39	72.75%	6.57E-01
10/19/2015	5	460662	Ambient	10	60.63	39.19	72.94%	1.63E+00
10/21/2015	5	CENTBSRR01	EDWQSPZ1	10	60.15	38.88	73.13%	1.62E+00
09/25/2008	5	460662	AMBIENT	106	58.87	38.05	73.48%	1.68E+01
11/02/2000	5	CENTBSRR01	CENTBSR1	61	56.94	36.80	73.93%	9.37E+00
10/08/2002	5	460662	AMBIENT	24	56.22	36.34	74.11%	3.64E+00
09/09/2021	5	460662	Ambient	132	56.22	36.34	74.12%	2.00E+01
12/15/2006	5	460662	AMBIENT	9	56.14	36.28	74.27%	1.36E+00
01/11/2022	5	460662	Ambient	6	55.10	35.61	74.77%	8.91E-01
02/23/2021	5	CENTBSRR01	RTBNRIST	5	54.94	35.51	74.81%	7.41E-01
08/16/2006	5	460662	AMBIENT	144	54.62	35.30	74.90%	2.12E+01
08/10/2000	5	460662	AMBIENT	112	54.54	35.25	74.93%	1.65E+01

12/17/2008	5	460662	QC	5	54.54	35.25	74.96%	7.35E-01
09/20/2021	5	CENTBSRR01	RTBNRIST	72	54.38	35.14	75.05%	1.06E+01
08/16/2021	5	CENTBSRR01	RTBNRIST	204	54.06	34.94	75.09%	2.97E+01
07/09/2002	5	NCENBSRR01	NCENBSR1	129	52.53	33.95	75.52%	1.83E+01
09/01/2022	5	460662	Ambient	94	51.89	33.54	75.93%	1.32E+01
11/13/2023	5	460662	Ambient	3	51.89	33.54	75.95%	4.20E-01
09/14/2021	5	CENTBSRR01	RTBNRIST	74	51.57	33.33	76.00%	1.03E+01
04/14/2004	5	460662	AMBIENT	142	51.25	33.12	76.21%	1.96E+01
08/22/2002	5	NCENBSRR01	NCENBSR1	100	50.29	32.50	76.46%	1.36E+01
03/13/2002	5	460662	AMBIENT	9	48.12	31.10	76.90%	1.17E+00
07/07/2021	5	460662	Ambient	92	48.12	31.10	77.45%	1.19E+01
12/10/2014	5	460662	Ambient	4	44.91	29.03	78.50%	4.84E-01
01/09/2008	5	460662	AMBIENT	11	44.11	28.51	78.84%	1.31E+00
12/16/2013	5	460662	Ambient	6	43.79	28.30	79.07%	7.08E-01
07/19/2021	5	CENTBSRR01	RTBNRIST	54	42.27	27.32	79.58%	6.15E+00
08/06/2002	5	NCENBSRR01	NCENBSR1	78	41.38	26.75	79.91%	8.70E+00
11/13/2002	5	460662	AMBIENT	7	41.38	26.75	79.92%	7.81E-01
07/19/2006	5	460662	AMBIENT	112	40.82	26.38	80.11%	1.23E+01
12/11/2002	5	460662	AMBIENT	4	39.86	25.76	80.75%	4.30E-01
10/15/2002	5	NCENBSRR01	NCENBSR1	14	39.54	25.55	80.90%	1.49E+00
09/19/2022	5	CENTBSRR01	EDWQSPZ1	6	39.38	25.45	81.00%	6.37E-01
11/08/2022	5	460662	Ambient	14	38.58	24.93	81.35%	1.46E+00
07/26/2012	5	CENTBSRR01	EDWQSPZ1	118	37.29	24.10	81.87%	1.19E+01
08/08/2012	5	460662	Ambient	168	36.97	23.90	82.02%	1.67E+01
01/10/2007	5	460662	AMBIENT	2	36.89	23.84	82.08%	1.99E-01
10/11/2023	5	460662	Ambient	6	36.65	23.69	82.19%	5.93E-01
08/12/2002	5	460662	AMBIENT	174	35.85	23.17	82.55%	1.68E+01
08/31/2005	5	460662	AMBIENT	80	35.53	22.96	82.65%	7.66E+00
03/03/2022	5	460662	Ambient	66	35.13	22.70	82.84%	6.25E+00
01/20/2009	5	460662	AMBIENT	11	34.49	22.29	83.06%	1.02E+00
02/08/2022	5	460662	Ambient	7	34.33	22.19	83.15%	6.48E-01
08/11/2004	5	460662	AMBIENT	108	33.60	21.72	83.55%	9.79E+00
09/07/2023	5	460662	Ambient	66	32.96	21.30	83.74%	5.87E+00
09/11/2002	5	NCENBSRR01	NCENBSR1	98	30.64	19.80	85.14%	8.10E+00
07/21/2003	5	460662	AMBIENT	120	30.56	19.75	85.18%	9.89E+00
02/12/2009	5	460662	AMBIENT	9	30.48	19.70	85.33%	7.40E-01
09/09/2002	5	460662	AMBIENT	190	30.32	19.59	85.47%	1.55E+01
09/11/2023	5	CENTBSRR01	EDWQSPZ1	60	29.67	19.18	85.85%	4.80E+00
10/03/2022	5	460662	Ambient	30	29.27	18.92	85.98%	2.37E+00
01/25/2000	5	460662	AMBIENT	7	25.66	16.59	87.60%	4.84E-01
09/08/2004	5	460662	AMBIENT	98	25.50	16.48	87.82%	6.74E+00
08/02/2021	5	460662	Ambient	134	24.86	16.07	88.02%	8.98E+00
10/27/2000	5	CENTBSRR01	CENTBSR1	23	24.06	15.55	88.23%	1.49E+00
12/05/2012	5	460662	Ambient	10	24.06	15.55	88.49%	6.49E-01
10/24/2012	5	CENTBSRR01	EDWQSPZ1	43	23.82	15.39	88.64%	2.76E+00
10/24/2000	5	460662	AMBIENT	114	23.26	15.03	88.87%	7.15E+00
11/07/2012	5	460662	QC	15	23.18	14.98	88.98%	9.37E-01
01/15/2014	5	460662	Ambient	4	22.46	14.51	89.34%	2.42E-01
03/29/2001	5	460662	AMBIENT	4	21.65	14.00	89.72%	2.34E-01
02/16/2005	5	460662	AMBIENT	9	20.85	13.48	90.09%	5.06E-01

08/29/2012	5	CENTBSRR01	EDWQSPZ1	80	20.69	13.37	90.36%	4.46E+00
11/20/2003	5	460662	AMBIENT	20	20.37	13.17	90.42%	1.10E+00
12/07/2022	5	460662	Ambient	8	20.05	12.96	90.80%	4.33E-01
01/11/2023	5	460662	Ambient	3	18.93	12.23	91.36%	1.53E-01
09/12/2000	5	460662	AMBIENT	58	17.64	11.40	91.93%	2.76E+00
02/27/2007	5	460662	AMBIENT	7	16.84	10.89	92.44%	3.18E-01
02/21/2008	5	460662	AMBIENT	6	16.84	10.89	92.46%	2.72E-01
10/16/2012	5	460662	Ambient	35	16.60	10.73	92.54%	1.57E+00
11/28/2000	5	460662	AMBIENT	10	16.04	10.37	92.67%	4.33E-01
01/10/2005	5	460662	AMBIENT	7	16.04	10.37	92.71%	3.03E-01
08/20/2003	5	460662	AMBIENT	92	15.80	10.21	92.96%	3.92E+00
10/28/2003	5	460662	AMBIENT	50	14.68	9.49	93.61%	1.98E+00
12/02/2003	5	460662	AMBIENT	25	14.36	9.28	94.03%	9.68E-01
09/26/2012	5	CENTBSRR01	EDWQSPZ1	94	13.79	8.92	94.29%	3.50E+00
09/12/2012	5	460662	Ambient	120	13.47	8.71	94.59%	4.36E+00
03/21/2023	5	460662	Ambient	8	13.31	8.60	94.67%	2.87E-01
01/09/2013	5	460662	QC	7	12.83	8.29	95.15%	2.42E-01
02/19/2004	5	460662	AMBIENT	28	12.51	8.09	95.30%	9.45E-01
01/07/2004	5	460662	AMBIENT	11	10.83	7.00	96.41%	3.21E-01
02/27/2023	5	460662	Ambient	8	10.67	6.89	96.50%	2.30E-01
02/06/2013	5	460662	Ambient	7	8.02	5.18	97.50%	1.51E-01
02/12/2014	5	460662	Ambient	67	8.02	5.18	97.58%	1.45E+00
09/03/2003	5	460662	AMBIENT	62	7.82	5.05	97.65%	1.31E+00
01/28/2003	5	460662	AMBIENT	8	7.22	4.67	97.99%	1.56E-01
02/16/2003	5	460662	AMBIENT	10	6.42	4.15	98.51%	1.73E-01
03/26/2013	5	460662	Ambient	8	6.42	4.15	98.68%	1.38E-01
01/10/2001	5	460662	AMBIENT	6	4.81	3.11	99.32%	7.79E-02

Observed TSS Loading BIG SIOUX 06										
SampleDate	Segment	StationID	Project	TSS Value (mg/L)	Discharge (MGD)	Flow Frequency Percentage	Observed Loading (ton/day)			
04/25/2001	6	460702	AMBIENT	13	3909.25	0.36%	2.12E+02			
04/12/2011	6	460702	Ambient	6	3317.12	0.72%	8.30E+01			
04/23/2018	6	460702	Ambient	10	3178.15	0.92%	1.33E+02			
04/16/2019	6	460702	Ambient	6	2894.17	1.34%	7.24E+01			
07/16/2019	6	460702	Ambient	5	2743.12	1.57%	5.72E+01			
06/16/2010	6	460702	AMBIENT	6	2646.45	1.67%	6.62E+01			
05/14/2019	6	460702	Ambient	1.5	2646.45	1.68%	1.66E+01			
03/12/2020	6	460702	Ambient	31	2634.36	1.71%	3.41E+02			
03/23/2010	6	460702	AMBIENT	7	2555.82	1.78%	7.46E+01			
07/24/2018	6	460702	Ambient	8	1734.09	3.62%	5.79E+01			
05/11/2011	6	460702	Ambient	10	1728.05	3.63%	7.21E+01			
06/27/2013	6	BIGSIOUX01	BROOKSWS	20	1728.05	3.64%	1.44E+02			
04/18/2023	6	460702	Ambient	4	1703.88	3.74%	2.84E+01			
03/21/2007	6	460702	AMBIENT	28	1528.66	4.37%	1.79E+02			
05/09/2012	6	460702	Ambient	67	1486.36	4.58%	4.15E+02			
04/07/2020	6	460702	Ambient	19	1486.36	4.61%	1.18E+02			
10/16/2019	6	460702	Ambient	16	1377.60	5.25%	9.20E+01			
10/10/2017	6	CENTBSRR03	EDWQSPZ1	16	1335.31	5.58%	8.91E+01			
07/06/2011	6	460702	Ambient	31	1299.06	5.91%	1.68E+02			
05/10/2012	6	BIGSIOUX01	BROOKSWS	59	1274.89	6.09%	3.14E+02			
07/14/2010	6	460702	AMBIENT	4	1250.72	6.26%	2.09E+01			
05/09/2018	6	CENTBSRR03	EDWQSPZ1	13	1232.59	6.46%	6.69E+01			
06/15/2011	6	460702	Ambient	19	1196.34	6.89%	9.48E+01			
05/16/2018	6	460702	Ambient	23	1111.75	7.56%	1.07E+02			
05/23/2001	6	460702	AMBIENT	19	1087.58	7.70%	8.62E+01			
04/14/2010	6	460702	AMBIENT	6	1087.58	7.72%	2.72E+01			
03/19/2019	6	460702	Ambient	109	1081.54	7.77%	4.92E+02			
05/06/2020	6	460702	Ambient	17	996.95	8.60%	7.07E+01			
05/24/2017	6	CENTBSRR03	EDWQSPZ1	30	990.91	8.65%	1.24E+02			
06/04/2014	6	460702	Ambient	103	936.53	9.21%	4.02E+02			
08/14/2019	6	460702	Ambient	48	906.32	9.56%	1.81E+02			
06/25/2001	6	460702	AMBIENT	29	888.19	9.71%	1.07E+02			
06/13/2013	6	BIGSIOUX01	BROOKSWS	49	864.02	9.91%	1.77E+02			
03/18/2009	6	460702	AMBIENT	1.5	857.98	9.95%	5.37E+00			
05/02/2013	6	BIGSIOUX01	BROOKSWS	86	821.73	10.33%	2.95E+02			
03/21/2018	6	460702	Ambient	69	809.64	10.46%	2.33E+02			
05/12/2022	6	460702	Ambient	123	803.60	10.60%	4.12E+02			
07/05/2018	6	CENTBSRR03	EDWQSPZ1	112	779.43	10.90%	3.64E+02			
09/04/2019	6	460702	Ambient	72	779.43	10.91%	2.34E+02			
05/18/2010	6	460702	AMBIENT	13	773.39	10.94%	4.19E+01			
12/18/2019	6	460702	Ambient	18	773.39	11.01%	5.81E+01			
05/24/2018	6	CENTBSRR03	EDWQSPZ1	32	761.31	11.24%	1.02E+02			
09/26/2018	6	CENTBSRR03	EDWQSPZ1	46	749.22	11.53%	1.44E+02			
04/16/2007	6	460702	AMBIENT	29	743.22	11.65%	8.92E+01			
09/26/2017	6	CENTBSRR03	EDWQSPZ1	29 92	731.14	11.87%	2.81E+02			
00/20/2011	U	CENT DOI(100		52	701.10	11.07 /0	2.012 702			

09/14/2010	6	460702	Ambient	54	719.01	12.08%	1.62E+02
06/02/2020	6	460702	Ambient	32	700.89	12.43%	9.36E+01
06/08/2022	6	460702	Ambient	73	694.84	12.54%	2.12E+02
06/18/2008	6	460702	AMBIENT	43	688.80	12.57%	1.24E+02
05/23/2022	6	CENTBSRR03	EDWQSPZ1	72	664.63	13.11%	2.00E+02
08/03/2011	6	460702	Ambient	127	658.59	13.19%	3.49E+02
08/29/2017	6	CENTBSRR03	EDWQSPZ1	52	652.55	13.26%	1.42E+02
04/12/2006	6	460702	AMBIENT	46	646.51	13.34%	1.24E+02
06/17/2014	6	CENTBSRR03	EDWQSPZ1	116	646.51	13.42%	3.13E+02
08/16/2010	6	460702	Ambient	71	634.42	13.61%	1.88E+02
07/18/2013	6	BIGSIOUX01	BROOKSWS	106	634.42	13.64%	2.81E+02
01/07/2020	6	460702	Ambient	17	634.42	13.69%	4.50E+01
10/17/2018	6	CENTBSRR03	EDWQSPZ1	32	628.38	13.76%	8.39E+01
11/14/2019	6	460702	Ambient	33	628.38	13.77%	8.65E+01
07/24/2001	6	460702	AMBIENT	172	622.34	13.83%	4.47E+02
04/15/2009	6	460702	AMBIENT	51	622.34	13.87%	1.32E+02
05/16/2007	6	460702	AMBIENT	24	601.79	14.37%	6.03E+01
04/15/2021	6	460702	Ambient	122	592.73	14.59%	3.02E+02
06/20/2016	6	460702	Ambient	100	590.31	14.67%	2.46E+02
10/19/2010	6	460702	Ambient	30	578.23	14.98%	7.24E+01
05/15/2002	6	460702	AMBIENT	84	577.63	14.99%	2.02E+02
06/15/2005	6	460702	AMBIENT	46	575.21	15.06%	1.10E+02
05/10/2023	6	460702	Ambient	62	571.58	15.13%	1.48E+02
04/16/2021	6	CENTBSRR03	RTBNRIST	116	546.81	15.61%	2.65E+02
03/25/2021	6	CENTBSRR03	RTBNRIST	134	545.60	15.67%	3.05E+02
05/09/2013	6	BIGSIOUX01	BROOKSWS	75	540.77	15.79%	1.69E+02
05/14/2014	6	460702	Ambient	67	535.33	15.94%	1.50E+02
03/19/2003	6	460702	AMBIENT	188	527.48	16.20%	4.14E+02
11/15/2010	6	460702	Ambient	18	514.79	16.54%	3.87E+01
03/09/2016	6	460702	Ambient	94	511.16	16.63%	2.00E+02
06/17/2013	6	460702	Ambient	108	496.66	17.08%	2.24E+02
04/09/2014	6	460702	Ambient	144	494.25	17.17%	2.97E+02
10/24/2017	6	460702	Ambient	38	491.83	17.33%	7.80E+01
02/11/2020	6	460702	Ambient	15	491.83	17.38%	3.08E+01
05/21/2008	6	460702	AMBIENT	37	490.02	17.50%	7.56E+01
06/13/2022	6	CENTBSRR03	EDWQSPZ1	129	489.41	17.56%	2.63E+02
05/08/2013	6	BIGSIOUX01	BROOKSWS	104	478.54	18.03%	2.08E+02
07/10/2013	6	460702	Ambient	116	477.33	18.06%	2.31E+02
10/25/2017	6	CENTBSRR03	EDWQSPZ1	23	474.91	18.12%	4.56E+01
05/30/2012	6	BIGSIOUX01	BROOKSWS	80	473.10	18.19%	1.58E+02
05/30/2013	6	BIGSIOUX01	BROOKSWS	72	471.29	18.28%	1.42E+02
05/22/2023	6	CENTBSRR03	EDWQSPZ1	78	453.76	18.84%	1.48E+02
07/11/2013	6	BIGSIOUX01	BROOKSWS	107	452.55	18.89%	2.02E+02
05/31/2012	6	BIGSIOUX01	BROOKSWS	72	451.95	18.91%	1.36E+02
06/22/2016	6	CENTBSRR03	EDWQSPZ1	100	451.35	18.92%	1.88E+02
04/19/2021	6	CENTBSRR03	RTBNRIST	152	449.53	18.99%	2.85E+02
08/26/2015	6	CENTBSRR03	EDWQSPZ1	69	436.24	19.48%	1.26E+02
08/15/2016	6	460702	Ambient	154	433.22	19.57%	2.78E+02
06/06/2007	6	460702	AMBIENT	35	432.01	19.61%	6.31E+01
10/23/2018	6	460702	Ambient	37	431.41	19.64%	6.66E+01

05/06/2009	6	460702	AMBIENT	18	398.78	21.06%	2.99E+01
05/10/2006	6	460702	AMBIENT	26	396.36	21.20%	4.30E+01
06/19/2018	6	CENTBSRR03	EDWQSPZ1	184	396.36	21.22%	3.04E+02
07/02/2014	6	CENTBSRR03	EDWQSPZ1	100	395.76	21.24%	1.65E+02
08/13/2014	6	460702	Ambient	174	383.67	21.82%	2.79E+02
05/15/2013	6	460702	Ambient	70	380.05	21.99%	1.11E+02
07/20/2016	6	CENTBSRR03	EDWQSPZ1	14	375.22	22.24%	2.19E+01
04/11/2017	6	460702	Ambient	34	372.80	22.32%	5.29E+01
06/06/2018	6	460702	Ambient	128	372.19	22.40%	1.99E+02
06/06/2013	6	BIGSIOUX01	BROOKSWS	93	370.38	22.52%	1.44E+02
05/23/2013	6	BIGSIOUX01	BROOKSWS	54	364.94	22.75%	8.22E+01
03/21/2012	6	460702	AMBIENT	108	364.34	22.79%	1.64E+02
03/19/2014	6	460702	Ambient	121	362.53	22.97%	1.83E+02
05/16/2013	6	BIGSIOUX01	BROOKSWS	67	355.88	23.28%	9.95E+01
06/20/2013	6	BIGSIOUX01	BROOKSWS	138	355.88	23.29%	2.05E+02
07/09/2015	6	460702	Ambient	213	355.28	23.32%	3.16E+02
05/21/2014	6	CENTBSRR03	EDWQSPZ1	41	354.67	23.37%	6.07E+01
10/31/2018	6	CENTBSRR03	EDWQSPZ1	33	352.26	23.48%	4.85E+01
08/12/2015	6	460702	Ambient	136	347.42	23.78%	1.97E+02
10/12/2016	6	460702	Ambient	61	341.98	24.13%	8.70E+01
07/11/2022	6	CENTBSRR03	EDWQSPZ1	200	340.17	24.23%	2.84E+02
05/26/2012	6	BIGSIOUX01	BROOKSWS	190	335.94	24.48%	2.66E+02
11/08/2017	6	CENTBSRR03	EDWQSPZ1	36	335.34	24.50%	5.04E+01
05/23/2012	6	BIGSIOUX01	BROOKSWS	144	328.69	24.74%	1.97E+02
06/21/2013	6	BIGSIOUX01	BROOKSWS	146	323.25	24.99%	1.97E+02
03/08/2017	6	460702	Ambient	59	323.25	25.02%	7.96E+01
04/26/2017	6	CENTBSRR03	EDWQSPZ1	26	322.04	25.05%	3.49E+01
06/21/2017	6	CENTBSRR03	EDWQSPZ1	39	313.59	25.52%	5.10E+01
08/01/2018	6	CENTBSRR03	EDWQSPZ1	82	311.17	25.65%	1.06E+02
03/28/2006	6	460702	AMBIENT	47	309.96	25.70%	6.08E+01
06/02/2000	6	CENTBSRR03	CENTBSR1	174	309.36	25.77%	2.25E+02
05/24/2012	6	BIGSIOUX01	BROOKSWS	140	305.13	25.95%	1.78E+02
06/12/2017	6	460702	Ambient	152	302.11	26.15%	1.92E+02
05/10/2017	6	460702	AMBIENT	65	300.90	26.23%	8.16E+01
04/22/2002	6	460702	AMBIENT	54	300.29	26.24%	6.77E+01
06/07/2017	6	CENTBSRR03	EDWQSPZ1	98	297.27	26.44%	1.22E+02
11/14/2018	6	460702	Ambient	26	296.06	26.56%	3.21E+01
06/03/2015	6	CENTBSRR03	EDWQSPZ1	156	290.63	26.80%	1.89E+02
04/16/2008	6	460702	AMBIENT	104	288.21	26.95%	1.25E+02
06/08/2016	6	CENTBSRR03	EDWQSPZ1	90	287.60	26.99%	1.08E+02
05/17/2012	6	BIGSIOUX01	BROOKSWS	122	287.00	27.02%	1.46E+02
08/17/2016	6	CENTBSRR03	EDWQSPZ1	126	287.00	27.03%	1.51E+02
05/03/2021	6	CENTBSRR03	RTBNRIST	168	286.40	27.08%	2.01E+02
03/09/2021	6	460702	Ambient	296	280.35	27.37%	3.46E+02
05/11/2017	6	CENTBSRR03	EDWQSPZ1	46	279.15	27.45%	5.36E+01
08/08/2018	6	460702	Ambient	108	279.15	27.47%	1.26E+02
07/16/2014	6	460702	Ambient	94	278.54	27.50%	1.09E+02
05/12/2016	6	CENTBSRR03	EDWQSPZ1	74	277.94	27.60%	8.58E+01
11/18/2009	6	460702	AMBIENT	29	277.33	27.64%	3.36E+01
07/25/2013	6	BIGSIOUX01	BROOKSWS	194	274.92	27.79%	2.23E+02

12/08/2010	6	460702	Ambient	12	271.90	28.03%	1.36E+01
06/06/2012	6	460702	Ambient	154	270.69	28.17%	1.74E+02
08/21/2001	6	460702	AMBIENT	146	268.87	28.24%	1.64E+02
05/18/2005	6	460702	AMBIENT	32	268.87	28.26%	3.59E+01
05/20/2012	6	BIGSIOUX01	BROOKSWS	196	267.06	28.34%	2.18E+02
05/20/2015	6	CENTBSRR03	EDWQSPZ1	127	264.04	28.57%	1.40E+02
04/27/2016	6	CENTBSRR03	EDWQSPZ1	47	261.62	28.76%	5.13E+01
12/11/2017	6	460702	Ambient	31	260.42	28.84%	3.37E+01
04/06/2016	6	460702	Ambient	59	258.60	29.07%	6.37E+01
05/11/2016	6	460702	Ambient	108	258.60	29.09%	1.17E+02
07/18/2018	6	CENTBSRR03	EDWQSPZ1	160	256.79	29.25%	1.71E+02
11/02/2021	6	460702	Ambient	96	255.58	29.36%	1.02E+02
04/13/2005	6	460702	AMBIENT	70	254.37	29.42%	7.43E+01
04/15/2013	6	460702	Ambient	119	250.14	29.73%	1.24E+02
09/14/2011	6	460702	Ambient	128	240.48	30.55%	1.28E+02
04/04/2012	6	460702	Ambient	120	240.48	30.56%	1.20E+02
11/16/2017	6	460702	Ambient	26	238.66	30.75%	2.59E+01
10/18/2016	6	CENTBSRR03	EDWQSPZ1	45	238.06	30.83%	4.47E+01
06/07/2012	6	BIGSIOUX01	BROOKSWS	126	237.46	30.90%	1.25E+02
07/14/2020	6	460702	Ambient	232	235.04	31.15%	2.27E+02
08/02/2017	6	CENTBSRR03	EDWQSPZ1	140	232.02	31.38%	1.36E+02
10/26/2009	6	460702	AMBIENT	54	226.58	31.88%	5.10E+01
04/12/2022	6	460702	Ambient	112	225.37	32.05%	1.05E+02
05/12/2021	6	460702	Ambient	124	222.95	32.28%	1.15E+02
07/14/2000	6	CENTBSRR03	CENTBSR1	326	217.52	32.64%	2.96E+02
07/06/2022	6	460702	Ambient	112	216.91	32.81%	1.01E+02
09/06/2017	6	460702	Ambient	41	215.70	32.89%	3.69E+01
06/16/2004	6	460702	AMBIENT	51	212.08	33.05%	4.51E+01
04/11/2016	6	CENTBSRR03	EDWQSPZ1	38	212.08	33.07%	3.36E+01
08/27/2014	6	CENTBSRR03	EDWQSPZ1	80	207.24	33.62%	6.92E+01
09/21/2005	6	460702	AMBIENT	92	203.62	33.96%	7.82E+01
09/13/2016	6	CENTBSRR03	EDWQSPZ1	81	202.41	34.06%	6.84E+01
12/10/2018	6	460702	Ambient	17	199.39	34.47%	1.41E+01
09/17/2001	6	460702	AMBIENT	128	193.35	35.09%	1.03E+02
07/29/2015	6	CENTBSRR03	EDWQSPZ1	89	190.93	35.51%	7.09E+01
09/10/2018	6	460702	Ambient	84	189.72	35.61%	6.65E+01
07/22/2009	6	460702	AMBIENT	160	189.12	35.69%	1.26E+02
07/01/2015	6	CENTBSRR03	EDWQSPZ1	150	187.31	35.88%	1.17E+02
08/01/2013	6	BIGSIOUX01	BROOKSWS	130	186.70	35.96%	1.01E+02
05/24/2000 08/28/2018	6	460702 CENTBSRR03	AMBIENT	188	184.89	36.18%	1.45E+02
	6	460702	EDWQSPZ1 AMBIENT	84 50	184.89 181.26	36.24%	6.48E+01
03/26/2008	6	460702		50 26		36.56%	3.78E+01
03/16/2011	6 6	460702	Ambient Ambient	36 146	181.26	36.71% 37.34%	2.72E+01
08/12/2020		460702	Ambient	29	177.03 172.20	37.34%	1.08E+02
10/19/2011 08/07/2013	6 6	460702	Ambient	29 113	172.20 171.60	37.81%	2.08E+01 8.09E+01
08/08/2013	6	BIGSIOUX01	BROOKSWS	9	171.60	37.88% 38.62%	6.26E+01
05/25/2016	6	CENTBSRR03	EDWQSPZ1	9 85	165.55	38.62% 38.77%	6.26E+00 5.87E+01
05/25/2016	6	460702	Ambient	65 11	165.55	38.77%	5.87E+01 7.49E+00
05/25/2021	6	CENTBSRR03	RTBNRIST	208	163.14	39.08% 39.37%	1.49E+00
00/20/2021	0	OLIVIDONNOS		200	101.32	53.51 /0	1.402402

12/12/2016	6	460702	Ambient	20	160.12	39.54%	1.34E+01
09/15/2016	6	460702	Ambient	116	158.91	39.63%	7.69E+01
02/09/2011	6	460702	Ambient	4	157.10	39.94%	2.62E+00
06/21/2012	6	BIGSIOUX01	BROOKSWS	184	157.10	39.98%	1.21E+02
09/12/2018	6	CENTBSRR03	EDWQSPZ1	78	155.89	40.21%	5.07E+01
11/09/2011	6	460702	Ambient	27	154.07	40.47%	1.74E+01
11/02/2016	6	CENTBSRR03	EDWQSPZ1	25	154.07	40.49%	1.61E+01
06/03/2021	6	460702	Ambient	248	154.07	40.51%	1.59E+02
06/28/2000	6	CENTBSRR03	CENTBSR1	262	153.47	40.52%	1.68E+02
06/13/2012	6	BIGSIOUX01	BROOKSWS	158	152.87	40.57%	1.01E+02
06/14/2012	6	BIGSIOUX01	BROOKSWS	160	152.87	40.58%	1.02E+02
10/16/2007	6	460702	AMBIENT	126	151.66	40.76%	7.97E+01
04/21/2003	6	460702	AMBIENT	69	150.45	41.11%	4.33E+01
05/14/2003	6	460702	AMBIENT	84	149.84	41.19%	5.25E+01
06/24/2009	6	460702	AMBIENT	160	149.24	41.24%	9.96E+01
09/10/2014	6	460702	Ambient	136	149.24	41.26%	8.47E+01
08/15/2013	6	BIGSIOUX01	BROOKSWS	61	147.43	41.47%	3.75E+01
08/15/2018	6	CENTBSRR03	EDWQSPZ1	92	145.01	41.81%	5.57E+01
09/28/2016	6	CENTBSRR03	EDWQSPZ1	33	138.97	42.57%	1.91E+01
10/13/2021	6	460702	Ambient	220	137.76	42.77%	1.26E+02
09/12/2017	6	CENTBSRR03	EDWQSPZ1	18	131.11	43.86%	9.85E+00
07/14/2004	6	460702	AMBIENT	126	130.51	43.93%	6.86E+01
11/09/2016	6	460702	Ambient	19	130.51	43.96%	1.03E+01
11/17/2020	6	460702	Ambient	57	129.91	44.10%	3.09E+01
09/27/2006	6	460702	AMBIENT	77	129.30	44.14%	4.15E+01
07/05/2017	6	CENTBSRR03	EDWQSPZ1	61	129.30	44.20%	3.29E+01
01/10/2019	6	460702	Ambient	5	129.30	44.21%	2.70E+00
08/13/2008	6	460702	AMBIENT	224	128.09	44.43%	1.20E+02
06/17/2015	6	CENTBSRR03	EDWQSPZ1	102	125.68	44.96%	5.35E+01
08/14/2017	6	460702	Ambient	136	123.26	45.47%	6.99E+01
08/16/2017	6	CENTBSRR03	EDWQSPZ1	84	122.65	45.58%	4.30E+01
10/06/2004	6	460702	AMBIENT	58	122.05	45.68%	2.95E+01
07/17/2017	6	460702	Ambient	200	121.45	45.87%	1.01E+02
06/07/2021	6	CENTBSRR03	RTBNRIST	240	121.45	45.90%	1.22E+02
05/25/2004	6	460702	AMBIENT	60	120.24	46.20%	3.01E+01
02/14/2017	6	460702	AMBIENT	35	119.63	46.37%	1.75E+01
06/27/2000	6	460702	AMBIENT	276	118.43	46.48%	1.36E+02
07/30/2014	6	CENTBSRR03	EDWQSPZ1	138	118.43	46.56%	6.82E+01
07/15/2015	6	CENTBSRR03	EDWQSPZ1	122	117.82	46.68%	6.00E+01
11/16/2016	6	CENTBSRR03	EDWQSPZ1	5	117.22	46.80%	2.45E+00
06/28/2012	6	BIGSIOUX01	BROOKSWS	166	116.61	46.85%	8.08E+01
08/22/2013	6	BIGSIOUX01	BROOKSWS	56	115.40	47.12%	2.70E+01
06/26/2023	6	CENTBSRR03	EDWQSPZ1	76	115.40	47.19%	3.66E+01
12/09/2015	6	460702	Ambient	11	114.80	47.36%	5.27E+00
06/13/2023	6	460702	Ambient	67	112.99	47.64%	3.16E+01
06/25/2002	6	460702	AMBIENT	202	111.17	47.97%	9.37E+01
10/18/2021	6	CENTBSRR03	RTBNRIST	110	111.17	48.09%	5.10E+01
09/08/2015	6	CENTBSRR03	EDWQSPZ1	88	109.36	48.44%	4.02E+01
11/28/2001	6	460702	AMBIENT	20	108.76	48.52%	9.07E+00
12/17/2001	6	460702	AMBIENT	16	108.76	48.54%	7.26E+00

02/27/2002	6	460702	AMBIENT	16	108.76	48.59%	7.26E+00
11/06/2007	6	460702	AMBIENT	22	106.95	49.13%	9.82E+00
10/29/2001	6	460702	AMBIENT	10	106.34	49.24%	4.44E+00
11/19/2008	6	460702	AMBIENT	16	105.74	49.51%	7.06E+00
05/06/2015	6	CENTBSRR03	EDWQSPZ1	59	105.74	49.58%	2.60E+01
03/28/2000	6	460702	AMBIENT	55	103.32	50.10%	2.37E+01
02/13/2019	6	460702	Ambient	1.5	103.32	50.21%	6.47E-01
07/19/2017	6	CENTBSRR03	EDWQSPZ1	118	100.90	50.92%	4.97E+01
01/09/2018	6	460702	Ambient	6	100.90	50.93%	2.53E+00
11/30/2005	6	460702	AMBIENT	9	99.69	51.16%	3.74E+00
07/15/2008	6	460702	AMBIENT	102	99.09	51.35%	4.22E+01
11/16/2004	6	460702	AMBIENT	12	97.88	51.66%	4.90E+00
08/30/2016	6	CENTBSRR03	EDWQSPZ1	42	97.88	51.75%	1.72E+01
09/03/2020	6	460702	Ambient	112	96.67	52.33%	4.52E+01
08/29/2013	6	BIGSIOUX01	BROOKSWS	118	93.65	53.24%	4.61E+01
09/22/2014	6	CENTBSRR03	EDWQSPZ1	30	93.65	53.25%	1.17E+01
12/09/2020	6	460702	Ambient	32	92.44	53.74%	1.23E+01
12/22/2021	6	460702	Ambient	11	91.84	53.95%	4.21E+00
01/07/2016	6	460702	Ambient	7	90.63	54.44%	2.65E+00
06/14/2006	6	460702	AMBIENT	116	90.03	54.54%	4.36E+01
04/15/2015	6	460702	Ambient	110	90.03	54.61%	4.13E+01
11/18/2013	6	460702	Ambient	11	88.21	55.24%	4.05E+00
01/11/2006	6	460702	AMBIENT	9	87.61	55.42%	3.29E+00
12/21/2009	6	460702	AMBIENT	13	87.61	55.57%	4.75E+00
02/15/2006	6	460702	AMBIENT	15	85.19	56.31%	5.33E+00
08/08/2022	6	460702	Ambient	48	84.59	56.92%	1.69E+01
04/27/2000	6	460702	AMBIENT	104	83.99	56.94%	3.64E+01
07/07/2016	6	CENTBSRR03	EDWQSPZ1	39	83.99	57.08%	1.37E+01
08/03/2016	6	CENTBSRR03	EDWQSPZ1	42	82.78	57.38%	1.45E+01
01/19/2017	6	460702	AMBIENT	10	82.78	57.40%	3.45E+00
09/14/2015	6	460702	Ambient	90	79.15	58.53%	2.97E+01
10/07/2020	6	460702	Ambient	24	78.55	59.02%	7.86E+00
03/29/2005	6	460702	AMBIENT	21	77.34	59.23%	6.78E+00
09/05/2013	6	BIGSIOUX01	BROOKSWS	81	76.73	59.50%	2.59E+01
07/06/2016	6	460702	Ambient	33	75.53	60.18%	1.04E+01
01/09/2012	6	460702	Ambient	15	74.92	60.31%	4.69E+00
02/26/2018	6	460702	Ambient	6	74.32	60.50%	1.86E+00
10/08/2014	6	460702	Ambient	27	73.71	60.70%	8.30E+00
12/21/2005	6	460702	AMBIENT	6	72.51	61.09%	1.81E+00
07/05/2012	6	BIGSIOUX01	BROOKSWS	126	72.51	61.44%	3.81E+01
08/17/2009	6	460702	AMBIENT	118	71.90	61.67%	3.54E+01
12/14/2011	6	460702	Ambient	12	71.90	61.69%	3.60E+00
09/19/2013	6	BIGSIOUX01	BROOKSWS	220	71.90	61.76%	6.60E+01
11/04/2015	6	460702	Ambient	24	71.30	61.95%	7.14E+00
08/09/2023	6	CENTBSRR03	EDWQSPZ1	164	71.30	61.99%	4.88E+01
07/20/2005	6	460702	AMBIENT	236	69.48	62.46%	6.84E+01
07/11/2007	6	460702	AMBIENT	200	69.48	62.48%	5.80E+01
01/14/2010	6	460702	AMBIENT	6	69.48	62.56%	1.74E+00
11/17/2015	6	CENTBSRR03	EDWQSPZ1	21	69.48	62.77%	6.09E+00
02/15/2012	6	460702	Ambient	9	68.88	63.02%	2.59E+00

01/11/2021	6	460702	Ambient	11	68.88	63.26%	3.16E+00
01/29/2021	6	CENTBSRR03	RTBNRIST	3	68.88	63.39%	8.62E-01
10/16/2008	6	460702	AMBIENT	29	67.07	64.05%	8.11E+00
12/22/2020	6	CENTBSRR03	RTBNRIST	11	67.07	64.19%	3.08E+00
09/11/2013	6	460702	Ambient	98	66.46	64.54%	2.72E+01
03/31/2004	6	460702	AMBIENT	29	65.86	64.74%	7.97E+00
09/12/2013	6	BIGSIOUX01	BROOKSWS	94	64.65	65.22%	2.54E+01
11/06/2014	6	460702	Ambient	11	64.65	65.26%	2.97E+00
07/11/2023	6	460702	Ambient	59	64.65	65.32%	1.59E+01
10/16/2006	6	460702	AMBIENT	104	60.06	66.98%	2.61E+01
08/15/2022	6	CENTBSRR03	EDWQSPZ1	53	58.79	67.45%	1.30E+01
06/11/2003	6	460702	AMBIENT	106	57.94	67.80%	2.56E+01
10/09/2013	6	460702	Ambient	41	57.16	68.38%	9.78E+00
07/09/2012	6	460702	Ambient	144	56.49	68.61%	3.39E+01
09/19/2007	6	460702	AMBIENT	67	55.95	68.84%	1.56E+01
07/17/2023	6	CENTBSRR03	EDWQSPZ1	48	55.41	68.99%	1.11E+01
12/15/2004	6	460702	AMBIENT	8	55.16	69.09%	1.84E+00
12/05/2007	6	460702	AMBIENT	7	54.38	69.47%	1.59E+00
03/11/2015	6	460702	Ambient	18	54.38	69.60%	4.08E+00
06/23/2021	6	CENTBSRR03	RTBNRIST	52	54.14	69.76%	1.17E+01
09/26/2013	6	BIGSIOUX01	BROOKSWS	44	54.02	69.83%	9.92E+00
09/23/2015	6	CENTBSRR03	EDWQSPZ1	61	53.96	69.84%	1.37E+01
08/16/2007	6	460702	AMBIENT	156	52.99	70.20%	3.45E+01
10/07/2015	6	CENTBSRR03	EDWQSPZ1	22	52.14	70.39%	4.79E+00
07/27/2000	6	460702	AMBIENT	132	51.96	70.41%	2.86E+01
02/24/2000	6	460702	AMBIENT	13	51.36	70.63%	2.79E+00
01/22/2002	6	460702	AMBIENT	11	51.36	70.71%	2.36E+00
02/18/2010	6	460702	AMBIENT	8	51.36	70.82%	1.71E+00
02/11/2015	6	460702	Ambient	8	50.75	71.02%	1.69E+00
07/12/2012	6	BIGSIOUX01	BROOKSWS	45	49.91	71.24%	9.37E+00
07/12/2021	6	CENTBSRR03	RTBNRIST	102	47.97	72.14%	2.04E+01
09/15/2009	6	460702	AMBIENT	74	46.77	72.54%	1.44E+01
01/22/2015	6	460702	Ambient	9	45.92	72.75%	1.72E+00
10/19/2015	6	460702	Ambient	8	45.68	72.94%	1.52E+00
10/21/2015	6	CENTBSRR03	EDWQSPZ1	15	45.32	73.13%	2.84E+00
09/25/2008	6	460702	AMBIENT	92	44.35	73.48%	1.70E+01
11/02/2000	6	CENTBSRR03	CENTBSR1	131	42.90	73.93%	2.34E+01
10/08/2002	6	460702	AMBIENT	30	42.36	74.11%	5.30E+00
09/09/2021	6	460702	Ambient	108	42.36	74.12%	1.91E+01
12/15/2006	6	460702	AMBIENT	12	42.29	74.27%	2.12E+00
02/17/2016	6	460702	Ambient	1.5	42.29	74.46%	2.65E-01
01/11/2022	6	460702	Ambient	8	41.51	74.77%	1.39E+00
02/23/2021	6	CENTBSRR03	RTBNRIST	5	41.39	74.81%	8.63E-01
08/16/2006	6	460702	AMBIENT	172	41.15	74.90%	2.95E+01
08/10/2000	6	460702	AMBIENT	96	41.09	74.93%	1.65E+01
12/17/2008	6	460702	AMBIENT	6	41.09	74.96%	1.03E+00
09/20/2021	6	CENTBSRR03	RTBNRIST	40	40.97	75.05%	6.84E+00
08/16/2021	6	CENTBSRR03	RTBNRIST	212	40.72	75.09%	3.60E+01
07/09/2002	6	460702	AMBIENT	108	39.58	75.52%	1.78E+01
09/01/2022	6	460702	Ambient	67	39.09	75.93%	1.09E+01

11/13/2023	6	460702	AMBIENT	6	39.09	75.95%	9.79E-01
09/14/2021	6	CENTBSRR03	RTBNRIST	38	38.85	76.00%	6.16E+00
04/14/2004	6	460702	AMBIENT	86	38.61	76.21%	1.39E+01
07/19/2012	6	BIGSIOUX01	BROOKSWS	82	37.52	76.53%	1.28E+01
03/13/2002	6	460702	AMBIENT	15	36.25	76.90%	2.27E+00
07/07/2021	6	460702	Ambient	82	36.25	77.45%	1.24E+01
12/10/2014	6	460702	Ambient	5	33.84	78.50%	7.06E-01
01/09/2008	6	460702	AMBIENT	10	33.23	78.84%	1.39E+00
12/16/2013	6	460702	Ambient	6	32.99	79.07%	8.26E-01
07/19/2021	6	CENTBSRR03	RTBNRIST	80	31.84	79.58%	1.06E+01
02/19/2021	6	CENTBSRR03	RTBNRIST	4	31.54	79.66%	5.26E-01
11/13/2002	6	460702	AMBIENT	7	31.18	79.92%	9.11E-01
12/11/2002	6	460702	AMBIENT	5	30.03	80.75%	6.26E-01
09/19/2022	6	CENTBSRR03	EDWQSPZ1	50	29.67	81.00%	6.19E+00
11/08/2022	6	460702	Ambient	13	29.06	81.35%	1.58E+00
08/09/2012	6	BIGSIOUX01	BROOKSWS	154	28.88	81.53%	1.86E+01
07/26/2012	6	BIGSIOUX01	BROOKSWS	132	28.10	81.87%	1.55E+01
08/08/2012	6	460702	Ambient	144	27.85	82.02%	1.67E+01
08/17/2000	6	CENTBSRR03	CENTBSR1	44	27.79	82.04%	5.10E+00
01/10/2007	6	460702	AMBIENT	8	27.79	82.08%	9.28E-01
10/11/2023	6	460702	Ambient	9	27.61	82.19%	1.04E+00
08/12/2002	6	460702	AMBIENT	86	27.01	82.55%	9.69E+00
08/31/2005	6	460702	AMBIENT	56	26.77	82.65%	6.25E+00
03/03/2022	6	460702	Ambient	10	26.46	82.84%	1.10E+00
01/20/2009	6	460702	AMBIENT	11	25.98	83.06%	1.19E+00
02/08/2022	6	460702	Ambient	13	25.86	83.15%	1.40E+00
09/07/2023	6	460702	Ambient	52	24.83	83.74%	5.39E+00
08/02/2012	6	BIGSIOUX01	BROOKSWS	116	24.23	84.14%	1.17E+01
07/21/2003	6	460702	AMBIENT	120	23.02	85.18%	1.15E+01
02/12/2009	6	460702	AMBIENT	7	22.96	85.33%	6.71E-01
09/09/2002	6	460702	AMBIENT	136	22.84	85.47%	1.30E+01
09/11/2023	6	CENTBSRR03	EDWQSPZ1	42	22.36	85.85%	3.92E+00
10/03/2022	6	460702	Ambient	33	22.05	85.98%	3.04E+00
08/16/2012	6	BIGSIOUX01	BROOKSWS	132	21.81	86.16%	1.20E+01
01/25/2000	6	460702	AMBIENT	6	19.33	87.60%	4.84E-01
09/08/2004	6	460702	AMBIENT	80	19.21	87.82%	6.41E+00
08/02/2021	6	CENTBSRR03	RTBNRIST	90	18.73	88.02%	7.03E+00
10/27/2000	6	CENTBSRR03	CENTBSR1	45	18.13	88.23%	3.40E+00
12/05/2012	6	460702	Ambient	14	18.13	88.49%	1.06E+00
10/24/2000	6	460702	AMBIENT	122	17.52	88.87%	8.92E+00
11/07/2012	6	460702	Ambient	19	17.46	88.98%	1.38E+00
08/23/2012	6	BIGSIOUX01	BROOKSWS	98	17.04	89.06%	6.97E+00
01/15/2014	6	460702	Ambient	5	16.92	89.34%	3.53E-01
08/30/2012	6	BIGSIOUX01	BROOKSWS	134	16.37	89.58%	9.15E+00
03/28/2001	6	460702	AMBIENT	14	16.31	89.71%	9.53E-01
08/28/2012	6	BIGSIOUX01	BROOKSWS	94	15.77	89.97%	6.18E+00
02/16/2005	6	460702	AMBIENT	9	15.71	90.09%	5.90E-01
11/20/2003	6	460702	AMBIENT	39	15.35	90.42%	2.50E+00
12/07/2022	6	460702	Ambient	5	15.11	90.80%	3.15E-01
01/11/2023	6	460702	Ambient	5	14.26	91.36%	2.97E-01

09/11/2000	6	460702	AMBIENT	54	13.29	91.92%	2.99E+00
09/06/2012	6	BIGSIOUX01	BROOKSWS	148	12.75	92.31%	7.87E+00
02/27/2007	6	460702	AMBIENT	16	12.69	92.44%	8.47E-01
02/21/2008	6	460702	AMBIENT	9	12.69	92.46%	4.76E-01
10/16/2012	6	460702	Ambient	57	12.51	92.54%	2.97E+00
11/28/2000	6	460702	AMBIENT	8	12.08	92.67%	4.03E-01
01/10/2005	6	460702	AMBIENT	3	12.08	92.71%	1.51E-01
08/20/2003	6	460702	AMBIENT	100	11.90	92.96%	4.97E+00
10/28/2003	6	460702	AMBIENT	27	11.06	93.61%	1.25E+00
09/20/2012	6	BIGSIOUX01	BROOKSWS	84	10.63	94.12%	3.73E+00
09/27/2012	6	BIGSIOUX01	BROOKSWS	112	10.51	94.19%	4.91E+00
09/13/2012	6	BIGSIOUX01	BROOKSWS	98	10.39	94.28%	4.25E+00
09/12/2012	6	460702	Ambient	130	10.15	94.59%	5.51E+00
03/21/2023	6	460702	Ambient	6	10.03	94.67%	2.51E-01
12/03/2003	6	460702	AMBIENT	24	9.91	94.74%	9.92E-01
10/04/2012	6	BIGSIOUX01	BROOKSWS	70	9.67	95.07%	2.82E+00
01/09/2013	6	460702	Ambient	5	9.67	95.15%	2.02E-01
02/19/2004	6	460702	AMBIENT	11	9.43	95.30%	4.33E-01
12/05/2000	6	460702	AMBIENT	6	9.06	95.50%	2.27E-01
01/21/2004	6	460702	AMBIENT	9	8.28	96.33%	3.11E-01
02/06/2013	6	460702	Ambient	7	6.04	97.50%	1.76E-01
02/12/2014	6	460702	Ambient	4	6.04	97.58%	1.01E-01
09/03/2003	6	460702	AMBIENT	76	5.89	97.65%	1.87E+00
02/28/2001	6	460702	AMBIENT	8	5.44	97.88%	1.81E-01
01/28/2003	6	460702	AMBIENT	7	5.44	97.99%	1.59E-01
02/18/2003	6	460702	AMBIENT	6	4.83	98.52%	1.21E-01
03/26/2013	6	460702	Ambient	56	4.83	98.68%	1.13E+00
01/10/2001	6	460702	AMBIENT	4	3.63	99.32%	6.05E-02

Appendix B – Construction Stormwater Permits

		Permit Expiration				
Permit Number	Project Address	Date	Acres Disturbed	Discharge Nature	Latitude	Longitude
	401 S MAIN AVE, BROOKINGS, SD			Construction		
SDR10P55E	57006	03/31/2023	5.7	Stormwater	44.2626	-96.7978
	1801 12TH STREET SOUTH,			Construction of		
SDR10J184	BROOKINGS, SD 57006	03/31/2023	5.8	Buildings	44.293303	-96.776377
				Highway, Bridge,		
	23RD ST. S, BROOKINGS, SD 57006			and Street		
SDR10I078		10/31/2028	10.8	Construction	44.2783	-96.7748
	20TH ST S & TANBURY LANE,			Branch Creek		
SDR10P50R	BROOKINGS, SD 57006	10/31/2028	25	Addition	44.2819	-96.7817
	20TH STREET S & ACE AVENUE,			Construction of		
SDR10K545	BROOKINGS, SD 57006	03/31/2023	3.3	Buildings	44.280116	-96.770968
	SE CORNER OF 20TH STREET					
	SOUTH AND ACE AVENUE,			Construction		
SDR10P510	BROOKINGS, SD 57006	10/31/2028	3.1	Stormwater	44.2817	-96.7711
				Water and Swer		
	1500 BLOCK OF MAIN AVE S,			Line and Related		
	BROOKINGS, SD 57006			Structures		
SDR10P249		10/31/2028	5.8	Construction	44.2878	-96.7982
				Commercial		
	CHRISTINE A VE, BROOKINGS, SD			Building		
SDR10H798	57006	03/31/2023	14	Construction	44.288056	-96.781943
	44TH ST S AND MAIN AVE S,			Sanitary Sewer		
	BROOKINGS, SD 57006			Replacement Phase		
SDR10P50V	BROOKINGS, SD 57000	10/31/2028	15	II	44.2537	-96.8022
	4316 WESTERN A VE S, BROOKINGS,			Sanitary Sewer		
	SD 57006			Replacement Phase		
SDR10P52L	52 37000	10/31/2028	20	III	44.255	-96.8083
	423 8TH ST S., BROOKINGS, SD 57006			Residental		
SDR10F360	22 0111 51 5., BROOKINGS, SD 57000	03/31/2023	34.5	Construction	44.284444	-96.779722

Appendix C – Simple Method Calculation Procedure

The Simple Method (Schueler, 1987) was used to estimate the Total Suspended Solids Loadings from the City of Brookings, SD. The Simple Method in this TMDL estimates pollutant loads for chemical constituents as a product of annual runoff volume and pollutant concentration for SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06. The pollutant load was calculated and then divided by 365 to get an estimated daily load. The daily load for 2012 and 2013 for both SD-BS-R-BIG_SIOUX_05 and SD-BS-R-BIG_SIOUX_06 was averaged and converted to ton/day to estimate the daily load of the MS4.

Equation 1 – Annual Load

$$L = 0.226 * R * C * A$$

Where: L = Annual load (lbs) R = Annual runoff (inches) C = Pollutant concentration (mg/L) A = Area (acres) 0.226 = Unit conversion factor

Annual Load - SD-BS-R-BIG_SIOUX_05	2012	2013	Avg. Year
L (annual load/lbs) =x*R*C*A	3.38E+05	9.31E+05	6.34E+05
x (unit conversion)	0.226	0.226	
R=Annual runoff (inches)	4.450	4.538	
C=Pollutant concentration (mg/L)	73.5	198.6	
A=Area (acres)	4569	4569	
Standard	90	90	
L allowed (if Loading Capacity is met)(annual)	4.14E+05	4.22E+05	4.18E+05
L allowed (if Loading Capacity is met)(daily/365	1.13E+03	1.16E+03	1.14E+03
L allowed (tons/day)			5.72E-01

Annual Load - SD-BS-R-BIG_SIOUX_06	2012	2013	Avg. Year
L (annual load in lbs) = x*R*C*A	2.15E+05	4.63E+05	3.39E+05
x (unit conversion)	0.226	0.226	
R=Annual runoff (inches)	4.034	4.114	
C=Pollutant concentration (mg/L)	57.7	121.8	
A=Area (acres)	4092	4092	
Standard	90	90	
L allowed (if Loading Capacity is met)(annual)	3.36E+05	3.42E+05	3.39E+05
L allowed (if Loading Capacity is met)(daily/365)	9.20E+02	9.38E+02	9.29E+02
L allowed (tons/day)			4.65E-01

The annual runoff (\mathbf{R}) was calculated using the equation:

$$R = P * Pj * Rv$$

Where: R = Annual runoff (inches)

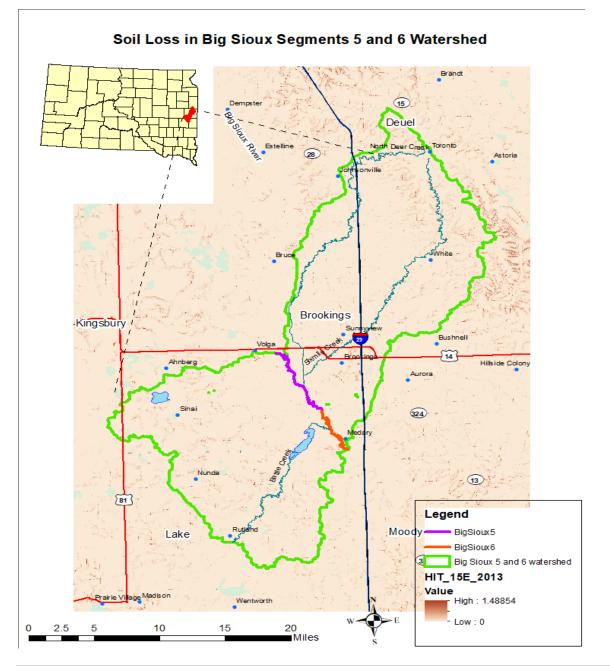
P = Annual rainfall (inches)

Pj = Fraction of annual rainfall events that produce runoff (estimated at 0.9)

Rv = Runoff coefficient

The calculation for Runoff Coefficient is based on impervious cover in the subwatershed. The percent imperviousness (Ia) was calculated using current NLCD estimates.

The annual runoff coefficient (\mathbf{Rv}) was calculated using the equation:


$$Rv = 0.05 + 0.9Ia$$

Annual Runoff (R) - SD-BS-R-BIG_SIOUX_05		2012	2013
R=P*Pj*Rv		4.450	4.538
where R= Annual runoff (inches)			
P=Annual rainfall (inches)		22.82	23.27
Pj= Fraction of annual rainfall events that produce runoff (.9)			
Rv= Runoff coefficient		0.21668	0.21668
Annual runoff coefficient Rv			
Rv=.05+.9la	0.9		
Rv=	0.21668		
la = percent impervious	0.1852		

Annual Runoff (R) - SD-BS-R-BIG_SIOUX_06		2012	2013
R=P*Pj*Rv		4.034	4.114
where R= Annual runoff (inches)			
P=Annual rainfall (inches)		22.82	23.27
Pj= Fraction of annual rainfall events that produce runoff (.9)			
Rv= Runoff coefficient		0.19643	0.19643
Annual runoff coefficient Rv			
Rv=.05+.9la	0.9		
Rv=	0.19643		
la = percent impervious	0.1627		

Appendix D – High Impact Targeting (HIT) Model

High Impact Targeting (HIT) is a RUSLE-based model which uses climatic and land use data for a given year that incorporates soil delivery ratios based on SEDMOD. RUSLE is a model that expresses soil loss based on rainfall energy, soil properties, topographic factors, land use, and soil conservation practices. SEDMOD is a model that expresses delivery ratios to streams based on the distance from cells to streams. The HIT combines these models and demonstrates the relative export of soil via overland erosion processes to the stream. The figure below shows a typical year of sediment transport in 2013 expressed in tons/acre/year delivered to the stream. As evident from figure below, soil loss in the watershed is relatively low except for certain isolated areas in the upper Six Mile Creek and upper North Deer Creek watersheds.

Appendix E – EPA Approval Letter and Decisions Document